Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neuromuscul Disord ; 31(5): 385-396, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33678513

RESUMO

Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy. Edasalonexent (CAT-1004) is an orally-administered novel small molecule that covalently links two bioactive compounds (salicylic acid and docosahexaenoic acid) that inhibit NF-κB. This placebo-controlled, proof-of-concept phase 2 study with open-label extension in boys ≥4-<8 years old with any dystrophin mutation examined the effect of edasalonexent (67 or 100 mg/kg/day) compared to placebo or off-treatment control. Endpoints were safety/tolerability, change from baseline in MRI T2 relaxation time of lower leg muscles and functional assessment, as well as pharmacodynamics and biomarkers. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly of the gastrointestinal system (primarily diarrhea). There were no serious adverse events in the edasalonexent groups. Edasalonexent 100 mg/kg was associated with slowing of disease progression and preservation of muscle function compared to an off-treatment control period, with decrease in levels of NF-κB-regulated genes and improvements in biomarkers of muscle health and inflammation. These results support investigating edasalonexent in future trials and have informed the design of the edasalonexent phase 3 clinical trial in boys with Duchenne.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , NF-kappa B , Salicilamidas/uso terapêutico , Criança , Pré-Escolar , Progressão da Doença , Método Duplo-Cego , Distrofina/genética , Humanos , Masculino , Músculo Esquelético , Estudo de Prova de Conceito
2.
J Neuromuscul Dis ; 6(1): 43-54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30452422

RESUMO

BACKGROUND: Edasalonexent is an orally administered small molecule designed to inhibit NF-κB, which is activated from infancy in Duchenne muscular dystrophy and is central to causing muscle damage and preventing muscle regeneration. OBJECTIVE: Evaluate the safety, tolerability, pharmacokinetics and exploratory pharmacodynamics of three doses of edasalonexent in ambulatory males ≥4 to <8 years of age with genetically confirmed Duchenne muscular dystrophy. METHODS: This was a 1-week, open-label, multiple-dose study with 3 sequential ascending doses (33, 67 and 100 mg/kg/day) of edasalonexent administered under different dietary conditions to 17 males with a mean age of 5.5 years. RESULTS: All doses of edasalonexent were well tolerated, with no serious adverse events, no drug discontinuations and no dose reductions. The majority of adverse events were mild, and the most common adverse events were gastrointestinal (primarily diarrhea). Edasalonexent was rapidly absorbed with peak levels observed 2-6 hours after dosing and exposures appeared to increase nearly proportionally to dose for the 2 lower and all 3 doses under low-fat and high-fat meal conditions, respectively. Only minor plasma accumulation of edasalonexent was observed with 7 days of dosing. After treatment with edasalonexent for 7 days, levels of NF-κB-regulated genes and serum proteins were decreased. CONCLUSIONS: This first report of edasalonexent oral administration for one week in male pediatric patients with Duchenne muscular dystrophy showed that treatment was well tolerated and inhibited NF-kB pathways.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Fármacos Neuromusculares/uso terapêutico , Salicilamidas/uso terapêutico , Administração Oral , Ácidos Araquidônicos/efeitos adversos , Ácidos Araquidônicos/farmacocinética , Criança , Pré-Escolar , Humanos , Masculino , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/urina , NF-kappa B/antagonistas & inibidores , NF-kappa B/sangue , Fármacos Neuromusculares/efeitos adversos , Fármacos Neuromusculares/farmacocinética , Salicilamidas/efeitos adversos , Salicilamidas/farmacocinética
4.
ACS Med Chem Lett ; 7(5): 465-9, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27190594

RESUMO

In recent years, soluble guanylate cyclase (sGC, EC 4.6.1.2) has emerged as an attractive therapeutic target for treating cardiovascular diseases and diseases associated with fibrosis and end-organ failure. Herein, we describe our design and synthesis of a series of 4-hydroxypyrimidine sGC stimulators starting with an internally discovered lead. Our efforts have led to the discovery of IWP-051, a molecule that achieves good alignment of potency, stability, selectivity, and pharmacodynamic effects while maintaining favorable pharmacokinetic properties with once-daily dosing potential in humans.

5.
PLoS One ; 10(11): e0141330, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26555695

RESUMO

Interleukin-6 (IL-6) is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman's Disease (CD) and rheumatoid arthritis (RA). Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R)/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs) directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs) directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK) profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG) moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP). This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology.


Assuntos
Interleucina-6/antagonistas & inibidores , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Desenho de Fármacos , Meia-Vida , Humanos , Hibridomas , Interleucina-6/química , Interleucina-6/metabolismo , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Modelos Moleculares , Dados de Sequência Molecular , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina-6/química , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade , Células U937
6.
J Pharmacol Exp Ther ; 355(1): 48-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26216942

RESUMO

MRP4 mediates the efflux of cGMP and cAMP and acts as an important regulator of these secondary messengers, thereby affecting signaling events mediated by cGMP and cAMP. Immunofluorescence staining showed high MRP4 expression localized predominantly in the apical membrane of rat colonic epithelium. In vitro studies were performed using a rat colonic mucosal layer mounted in an Ussing chamber. Linaclotide activation of the guanylate cyclase-C (GC-C)/cGMP pathway induced a concentration-dependent increase in transepithelial ion current [short-circuit current (Isc)] across rat colonic mucosa (EC50: 9.2 nM). Pretreatment of colonic mucosa with the specific MRP4 inhibitor MK571 potentiated linaclotide-induced electrolyte secretion and augmented linaclotide-stimulated intracellular cGMP accumulation. Notably, pretreatment with the phosphodiesterase 5 inhibitor sildenafil increased basal Isc, but had no amplifying effect on linaclotide-induced Isc. MRP4 inhibition selectively affected the activation phase, but not the deactivation phase, of linaclotide. In contrast, incubation with a GC-C/Fc chimera binding to linaclotide abrogated linaclotide-induced Isc, returning to baseline. Furthermore, linaclotide activation of GC-C induced cGMP secretion from the apical and basolateral membranes of colonic epithelium. MRP4 inhibition blocked cGMP efflux from the apical membrane, but not the basolateral membrane. These data reveal a novel, previously unrecognized mechanism that functionally couples GC-C-induced luminal electrolyte transport and cGMP secretion to spatially restricted, compartmentalized regulation by MRP4 at the apical membrane of intestinal epithelium. These findings have important implications for gastrointestinal disorders with symptoms associated with dysregulated fluid homeostasis, such as irritable bowel syndrome with constipation, chronic idiopathic constipation, and secretory diarrhea.


Assuntos
GMP Cíclico/metabolismo , Eletrólitos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Peptídeos/farmacologia , Propionatos/farmacologia , Quinolinas/farmacologia , Receptores Acoplados a Guanilato Ciclase/metabolismo , Receptores de Peptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Colo/citologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/fisiologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Cinética , Ratos , Ratos Sprague-Dawley , Receptores de Enterotoxina
7.
Antimicrob Agents Chemother ; 50(10): 3312-6, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17005810

RESUMO

Candida albicans remains the leading causative agent of invasive fungal infection. Although the importance of filamentation in C. albicans pathogenesis has been extensively investigated, in vivo studies to date have been unable to dissect the role of this developmental process in the establishment of infection versus the development of active disease as characterized by damage to the host leading to mortality. To address this issue, we genetically engineered a C. albicans tet-NRG1 strain in which filamentation and virulence can be modulated both in vitro and in vivo simply by the presence or absence of doxycycline (DOX): this strain enabled us, in a prior study, to demonstrate that yeast-form cells were able to infect the deep organs but caused no disease unless filamentation (induced by the addition of DOX) was allowed to occur. In the present study, we examined whether inhibiting filamentation (by withdrawing the DOX) at 24 or 48 h postinfection could serve as an effective therapeutic intervention against candidiasis. The results obtained indicate that DOX removal led to an alteration in the morphology of the infecting fungal cells and a dramatic increase in survival, but as with conventional antifungal drug therapy regimens, mortality rates increased markedly the longer this intervention was delayed. These observations reinforce the importance of invasive filamentous growth in causing the damage to the host and the lethality associated with active disease and suggest this process could be fruitfully targeted for the development of new antifungal agents.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Doxiciclina/farmacologia , Hifas/efeitos dos fármacos , Animais , Antifúngicos/uso terapêutico , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Candidíase/microbiologia , Candidíase/mortalidade , Candidíase/patologia , Proteínas de Ligação a DNA/genética , Doxiciclina/uso terapêutico , Feminino , Regulação Fúngica da Expressão Gênica , Engenharia Genética , Hifas/crescimento & desenvolvimento , Rim/microbiologia , Rim/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA