Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Matrix Biol ; 77: 4-22, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29777767

RESUMO

Sterile inflammation is a therapeutic target in many diseases where it represents an important initiator of disease progression. However, the detailed mechanisms underlying its evolution and biological relevance are not yet completely elucidated. Biglycan, a prototype extracellular matrix-derived damage-associated molecular pattern, mediates sterile inflammation in macrophages through Toll-like receptor (TLR) 2 and/or TLR4-dependent signaling pathways. Here we discovered that soluble biglycan is a novel high-affinity ligand for CD14, a well-known GPI-anchored co-receptor for TLRs. CD14 is required for all biglycan-mediated TLR2/4 dependent inflammatory signaling pathways in macrophages. By binding to CD14 and choosing different TLR signaling branches, biglycan induced TNF-α and CCL2 via TLR2/4, HSP70 through TLR2, and CCL5 via TLR4. Mechanistically, biglycan evoked phosphorylation and subsequent nuclear translocation of p38, p44/42, and NF-κB, and these effects were due to a specific, high-affinity interaction between biglycan protein core and CD14. Finally, we provide proof-of-principle for the requirement of CD14, by transiently overexpressing biglycan in a mouse model of renal ischemia/reperfusion injury performed in Cd14-/- mice. Lack of Cd14 prevented biglycan-mediated cytokine expression, recruitment of macrophages, M1 macrophage polarization as well as mitigated the tubular damage and serum creatinine levels, thereby improving renal function. Thus, CD14 inhibition could lead to the reduction in the activation of biglycan-TLR2/4 signaling pathways and could be a novel therapeutic approach in inflammatory kidney diseases.


Assuntos
Biglicano/farmacologia , Rim/efeitos dos fármacos , Receptores de Lipopolissacarídeos/genética , Macrófagos/efeitos dos fármacos , Traumatismo por Reperfusão/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Animais , Biglicano/imunologia , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Matriz Extracelular/química , Matriz Extracelular/imunologia , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/imunologia , Humanos , Inflamação , Rim/imunologia , Rim/patologia , Ligantes , Receptores de Lipopolissacarídeos/deficiência , Receptores de Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Ligação Proteica , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
2.
Cell Mol Life Sci ; 75(9): 1671-1685, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29116364

RESUMO

Low density lipoprotein receptor-related protein (LRP) 1 modulates cell adhesion and motility under normal and pathological conditions. Previous studies documented that LRP1 binds several integrin receptors and mediates their trafficking to the cell surface and endocytosis. However, the mechanism by which LRP1 may regulate integrin activation remains unknown. Here we report that LRP1 promotes the activation and subsequent degradation of ß1 integrin and thus supports cell adhesion, spreading, migration and integrin signaling on fibronectin. LRP1 interacts with surface ß1 integrin, binds the integrin activator kindlin2 and stimulates ß1 integrin-kindlin2 complex formation. Specifically, serine 76 in the LRP1 cytoplasmic tail is crucial for the interaction with kindlin2, ß1 integrin activation and cell adhesion. Interestingly, a loss of LRP1 induces the accumulation of several integrin receptors on the cell surface. Following internalization, intracellular trafficking of integrins is driven by LRP1 in a protein kinase C- and class II myosin-dependent manner. Ultimately, LRP1 dictates the fate of endocytosed ß1 integrin by directing it down the pathway of lysosomal and proteasomal degradation. We propose that LRP1 mediates cell adhesion by orchestrating a multi-protein pathway to activate, traffic and degrade integrins. Thus, LRP1 may serve as a focal point in the integrin quality control system to ensure a firm connection to the extracellular matrix.


Assuntos
Integrina beta1/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Animais , Membrana Celular/metabolismo , Células Cultivadas , Embrião de Mamíferos , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Camundongos Knockout , Transporte Proteico/genética , Proteólise , Receptores de LDL/genética , Receptores de LDL/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
3.
Am J Pathol ; 187(11): 2413-2429, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28807595

RESUMO

Kidney fibrosis is a hallmark of chronic kidney disease and leads to extracellular matrix accumulation, organ scarring, and loss of kidney function. In this study, we investigated the role of sphingosine kinase-2 (SPHK2) on the progression of tubular fibrosis by using a mouse unilateral ureteral obstruction (UUO) model. We found that SPHK2 protein and activity are up-regulated in fibrotic renal tissue. Functionally, Sphk2-deficient (Sphk2-/-) mice showed an attenuated fibrotic response to UUO compared with wild-type mice, as demonstrated by reduced collagen abundance and decreased expression of fibronectin-1, collagen I, α-smooth muscle actin, connective tissue growth factor (CTGF), and plasminogen activator inhibitor (PAI-1). More important, these changes were associated with increased expression of the antifibrotic protein Smad7 and higher levels of sphingosine in Sphk2-/- UUO kidneys. Mechanistically, sphingosine ameliorates transforming growth factor-ß-induced collagen accumulation, CTGF, and PAI-1 expression, but enhances Smad7 protein expression in primary kidney fibroblasts. In a complementary approach, in human Sphk2-overexpressing mice, UUO resulted in exacerbated signs of fibrosis with increased collagen accumulation, higher expression levels of fibronectin-1, collagen I, α-smooth muscle actin, CTGF, and PAI-1, but decreased Smad7 expression. SPHK2 plays an important role in kidney fibrogenesis by modulating transforming growth factor-ß signaling. Thus, SPHK2 might be an attractive new target for the treatment of fibrosis in chronic kidney disease.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína Smad7/metabolismo , Obstrução Ureteral/patologia , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Fibrose/genética , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Proteína Smad7/genética , Regulação para Cima , Obstrução Ureteral/genética
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 561-571, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28257804

RESUMO

Human 5-lipoxygenase (5-LO-WT) initiates the leukotriene (LT) biosynthesis. LTs play an important role in diseases like asthma, atherosclerosis and in many types of cancer. In this study, we investigated the 5-LO isoforms 5-LO∆13, 5-LO∆4 and 5-LOp12, lacking the exons 13, 4 or a part of exon 12, respectively. We were able to detect the mRNA of the isoforms 5-LO∆13 and 5-LOp12 in B and T cell lines as well as in primary B and T cells and monocytes. Furthermore, we found that expression of 5-LO and particularly of the 5-LO∆13 and 5-LOp12 isoforms is increased in monocytes from patients with rheumatoid arthritis and sepsis. Confocal microscopy of HEK293T cells stably transfected with tagged 5-LO-WT and/or the isoforms revealed that 5-LO-WT is localized in the nucleus whereas all isoforms are located in the cytosol. Additionally, all isoforms are catalytically inactive and do not seem to influence the specific activity of 5-LO-WT. S271A mutation in 5-LO-WT and treatment of the cells with sorbitol or KN-93/SB203580 changes the localization of the WT enzyme to the cytosol. Despite colocalization with the S271A mutant, the isoforms did not affect LT biosynthesis. Analysis of the phosphorylation pattern of 5-LO-WT and all the isoforms revealed that 5-LOp12 and 5-LO∆13 are highly phosphorylated at Ser271 and 5-LOp12 at Ser523. Furthermore, coexpression of the isoforms inhibited or stimulated 5-LO-WT expression in transiently and stably transfected HEK293T cells suggesting that the isoforms have other functions than canonical LT biosynthesis.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Núcleo Celular/ultraestrutura , Citosol/ultraestrutura , Isoformas de Proteínas/metabolismo , Araquidonato 5-Lipoxigenase/química , Araquidonato 5-Lipoxigenase/isolamento & purificação , Núcleo Celular/metabolismo , Citosol/metabolismo , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Leucotrienos/biossíntese , Neutrófilos/metabolismo , Neutrófilos/ultraestrutura , Fosforilação , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação
5.
Am J Respir Crit Care Med ; 196(2): 186-199, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28005404

RESUMO

RATIONALE: Acute respiratory distress syndrome is characterized by alveolar epithelial cell injury, edema formation, and intraalveolar contact phase activation. OBJECTIVES: To explore whether C1 esterase inhibitor (C1INH), an endogenous inhibitor of the contact phase, may protect from lung injury in vivo and to decipher the possible underlying mechanisms mediating protection. METHODS: The ability of C1INH to control the inflammatory processes was studied in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS: Here, we demonstrate that application of C1INH alleviates bleomycin-induced lung injury via direct interaction with extracellular histones. In vitro, C1INH was found to bind all histone types. Interaction with histones was independent of its protease inhibitory activity, as demonstrated by the use of reactive-center-cleaved C1INH, but dependent on its glycosylation status. C1INH sialylated-N- and -O-glycans were not only essential for its interaction with histones but also to protect against histone-induced cell death. In vivo, histone-C1INH complexes were detected in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome and multiple models of lung injury. Furthermore, reactive-center-cleaved C1INH attenuated pulmonary damage evoked by intravenous histone instillation. CONCLUSIONS: Collectively, C1INH administration provides a new therapeutic option for disorders associated with histone release.


Assuntos
Proteína Inibidora do Complemento C1/farmacologia , Histonas/metabolismo , Lesão Pulmonar/prevenção & controle , Síndrome do Desconforto Respiratório/fisiopatologia , Animais , Líquido da Lavagem Broncoalveolar , Proteína Inibidora do Complemento C1/metabolismo , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL
6.
Glycoconj J ; 34(3): 393-404, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27600268

RESUMO

Secondary polycythemia, a disease characterized by a selective increase in circulating mature erythrocytes, is caused by enhanced erythropoietin (Epo) concentrations triggered by hypoxia-inducible factor-2α (HIF-2α). While mechanisms of hypoxia-dependent stabilization of HIF-2α protein are well established, data regarding oxygen-independent regulation of HIF-2α are sparse. In this study, we generated a novel transgenic mouse model, in which biglycan was constitutively overexpressed and secreted by hepatocytes (BGN Tg), thereby providing a constant source of biglycan released into the blood stream. We discovered that although the mice were apparently normal, they harbored an increase in mature circulating erythrocytes. In addition to erythrocytosis, the BGN Tg mice showed elevated hemoglobin concentrations, hematocrit values and enhanced total iron binding capacity, revealing a clinical picture of polycythemia. In BGN Tg mice markedly enhanced Epo mRNA expression was observed in the liver and kidney, while elevated Epo protein levels were found in liver, kidney and blood. Mechanistically, we showed that the transgenic animals had an abundance of HIF-2α protein in the liver and kidney. Finally, by transiently overexpressing circulating biglycan in mice deficient in various Toll-like receptors (TLRs), we determined that this novel function of biglycan to promote Epo synthesis was specifically mediated by a selective interaction with TLR2. Thus, we discovered a novel biological pathway of soluble biglycan inducing HIF-2α protein stabilization and Epo production presumably in an oxygen-independent manner, ultimately giving rise to secondary polycythemia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biglicano/genética , Eritropoetina/genética , Hepatócitos/metabolismo , Policitemia/genética , RNA Mensageiro/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biglicano/metabolismo , Modelos Animais de Doenças , Contagem de Eritrócitos , Eritrócitos/metabolismo , Eritrócitos/patologia , Eritropoetina/biossíntese , Regulação da Expressão Gênica , Hematócrito , Hemoglobinas/metabolismo , Hepatócitos/patologia , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Transgênicos , Policitemia/metabolismo , Policitemia/patologia , RNA Mensageiro/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
7.
Am J Pathol ; 186(5): 1206-20, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26968342

RESUMO

Sepsis is burdened by high mortality due to uncontrolled inflammatory response to pathogens. Increased caspase 1 activation causing maturation of IL1ß/18 remains a therapeutic challenge in sepsis. SHARPIN (shank-associated regulator of G-protein signaling homology domain-interacting protein), a component of the LUBAC (linear ubiquitin chain-assembly complex), regulates inflammation, with unknown effects on caspase 1 activation. Mice lacking Casp1, Casp11, or both in a Sharpin-deficient background were generated, exposed to lipopolysaccharide-induced endotoxemia, and injected with caspase 1 inhibitor. We monitored survival, Il1ß/18, and caspase 1/11 levels in plasma and organs and deciphered mechanisms of SHARPIN-dependent caspase 1 inhibition. A correlation between LUBAC and active caspase 1 was found in blood mononuclear cells from septic patients. SHARPIN bound caspase 1 and disrupted p20/p10 dimer formation, the last step of caspase 1 processing, thereby inhibiting enzyme activation and maturation of IL1ß/18 in a LUBAC-independent manner. In septic patients, LUBAC-independent decline in SHARPIN correlated with enhancement of active caspase 1 in circulating mononuclear cells. Septic Sharpin-deficient mice displayed enrichment in mature Il1ß/18 and active caspase 1, and shortened survival. Inhibition of caspase 1 reduced levels of Il1ß/18 and splenic cell death, and prolonged survival in septic Sharpin-deficient mice. Our findings identify SHARPIN as a potent in vivo caspase 1 inhibitor and propose the caspase 1-SHARPIN interaction as a target in sepsis.


Assuntos
Caspase 1/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Sepse/enzimologia , Animais , Caspase 1/deficiência , Inibidores de Caspase/farmacologia , Caspases/deficiência , Caspases/metabolismo , Caspases Iniciadoras , Células Cultivadas , Dermatite/enzimologia , Regulação para Baixo/fisiologia , Endotoxemia/induzido quimicamente , Técnicas de Silenciamento de Genes , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/enzimologia , Lipopolissacarídeos/toxicidade , Pulmão/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/farmacologia , Proteínas do Tecido Nervoso/deficiência , Fenótipo , Salmonella , Transfecção
8.
Matrix Biol ; 49: 61-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26689330

RESUMO

Biglycan, a ubiquitous proteoglycan, acts as a danger signal when released from the extracellular matrix. As such, biglycan triggers the synthesis and maturation of interleukin-1ß (IL-1ß) in a Toll-like receptor (TLR) 2-, TLR4-, and reactive oxygen species (ROS)-dependent manner. Here, we discovered that biglycan autonomously regulates the balance in IL-1ß production in vitro and in vivo by modulating expression, activity and stability of NADPH oxidase (NOX) 1, 2 and 4 enzymes via different TLR pathways. In primary murine macrophages, biglycan triggered NOX1/4-mediated ROS generation, thereby enhancing IL-1ß expression. Surprisingly, biglycan inhibited IL-1ß due to enhancement of NOX2 synthesis and activation, by selectively interacting with TLR4. Synthesis of NOX2 was mediated by adaptor molecule Toll/IL-1R domain-containing adaptor inducing IFN-ß (TRIF). Via myeloid differentiation primary response protein (MyD88) as well as Rac1 activation and Erk phosphorylation, biglycan triggered translocation of the cytosolic NOX2 subunit p47(phox) to the plasma membrane, an obligatory step for NOX2 activation. In contrast, by engaging TLR2, soluble biglycan stimulated the expression of heat shock protein (HSP) 70, which bound to NOX2, and consequently impaired the inhibitory function of NOX2 on IL-1ß expression. Notably, a genetic background lacking biglycan reduced HSP70 expression, rescued the enhanced renal IL-1ß production and improved kidney function of Nox2(-/y) mice in a model of renal ischemia reperfusion injury. Here, we provide a novel mechanism where the danger molecule biglycan influences NOX2 synthesis and activation via different TLR pathways, thereby regulating inflammation severity. Thus, selective inhibition of biglycan-TLR2 or biglycan-TLR4 signaling could be a novel therapeutic approach in ROS-mediated inflammatory diseases.


Assuntos
Biglicano/metabolismo , Interleucina-8/metabolismo , Glicoproteínas de Membrana/metabolismo , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidases/metabolismo , Animais , Células Cultivadas , Rim/lesões , Rim/metabolismo , Macrófagos/metabolismo , Camundongos , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidase 4 , Traumatismo por Reperfusão/etiologia , Transdução de Sinais , Receptores Toll-Like/metabolismo
9.
Matrix Biol ; 48: 14-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26344480

RESUMO

We have recently discovered that soluble extracellular matrix constituents regulate autophagy via an outside-in signaling pathway. Decorin, a secreted proteoglycan, evokes autophagy in endothelial cells and mitophagy in breast carcinoma cells. However, it is not known whether decorin expression can be regulated by autophagic stimuli such as mTOR inhibition or nutrient deprivation. Thus, we tested whether pro-autophagic stimuli could affect decorin expression in mouse cardiac tissue and whether the absence of decorin could disrupt the in vivo autophagic response. We found that nutrient deprivation induced decorin at the mRNA and protein level in vivo and in vitro, a process regulated at the transcriptional level by inhibiting the canonical mTOR pathway. Moreover, Dcn-/- mice displayed an aberrant response to fasting compared to wild-type mice. Our study establishes a new role for an extracellular matrix proteoglycan and provides a mechanistic role for soluble decorin in regulating a fundamental intracellular catabolic process.


Assuntos
Autofagia/genética , Biglicano/genética , Decorina/genética , Miocárdio/metabolismo , Serina-Treonina Quinases TOR/genética , Animais , Biglicano/metabolismo , Decorina/deficiência , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Jejum/metabolismo , Feminino , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Luciferases/genética , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Células NIH 3T3 , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
Biochim Biophys Acta ; 1855(2): 276-300, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25829250

RESUMO

Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer.


Assuntos
Neoplasias da Mama/genética , Neovascularização Patológica/genética , Proteoglicanas/biossíntese , Pesquisa Translacional Biomédica , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Proteoglicanas/antagonistas & inibidores , Proteoglicanas/uso terapêutico , Transdução de Sinais/genética , Microambiente Tumoral/genética
11.
J Biol Chem ; 290(11): 7027-39, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25589788

RESUMO

Hageman factor (FXIIa) initiates the intrinsic coagulation pathway and triggers the kallikrein-kinin and the complement systems. In addition, it functions as a growth factor by expressing promitogenic activities toward several cell types. FXIIa binds to the cell surface via a number of structurally unrelated surface receptors; however, the underlying mechanisms are not yet fully understood. Here, we demonstrate that FXIIa utilizes cell membrane-bound glycosaminoglycans to interact with the cell surface of human lung fibroblasts (HLF). The combination of enzymatic, inhibitory, and overexpression approaches identified a heparan sulfate (HS) component of proteoglycans as an important determinant of the FXIIa binding capacity of HLF. Moreover, cell-free assays and competition experiments revealed preferential binding of FXIIa to HS and heparin over dextran sulfate, dermatan sulfate, and chondroitin sulfate A and C. Finally, we demonstrate that fibroblasts isolated from the lungs of the patients suffering from idiopathic pulmonary fibrosis (IPF) exhibit enhanced FXIIa binding capacity. Increased sulfation of HS resulting from elevated HS 6-O-sulfotransferase-1 expression in IPF HLF accounted, in part, for this phenomenon. Application of RNA interference technology and inhibitors of intracellular sulfation revealed the cooperative action of cell surface-associated HS and urokinase-type plasminogen activator receptor in the accumulation of FXIIa on the cell surface of IPF HLF. Moreover, FXIIa stimulated IPF HLF migration, which was abrogated by pretreatment of cells with heparinase I. Collectively, our study uncovers a novel role of HS-type glycosaminoglycans in a local accumulation of FXIIa on the cell membrane. The enhanced association of FXIIa with IPF HLF suggests its contribution to fibrogenesis.


Assuntos
Fator XIIa/metabolismo , Fibroblastos/patologia , Proteoglicanas de Heparan Sulfato/metabolismo , Pulmão/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Células Cultivadas , Fator XIIa/análise , Fibroblastos/metabolismo , Proteoglicanas de Heparan Sulfato/análise , Humanos , Pulmão/metabolismo , Ligação Proteica
12.
Matrix Biol ; 35: 143-51, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24480070

RESUMO

Exacerbated inflammation in renal ischemia-reperfusion injury, the major cause of intrinsic acute renal failure, is a key trigger of kidney damage. During disease endogenous danger signals stimulate innate immune cells via Toll-like receptors (TLR)-2 and -4 and accelerate inflammatory responses. Here we show that production of soluble biglycan, a small leucine-rich proteoglycan, is induced during reperfusion and that it functions as endogenous agonist of TLR-2/4. Biglycan-mediated activation of TLR-2/4 initiates an inflammatory response in native kidneys, which is marked by the release of cytokines and chemokines and recruitment of inflammatory cells. Overexpression of soluble circulating biglycan before ischemic reperfusion enhanced plasma and renal levels of TNF-α, CXCL1, CCL2 and CCL5, caused influx of neutrophils, macrophages and T cells and overall worsened renal function in wild type mice. We provide robust genetic evidence for TLR-2/4 requirement insofar as biglycan biological effects were markedly dampened in mice deficient in both innate immune receptors, Tlr2(-/-);Tlr4(-/-) mice. Thus, signaling of soluble biglycan via TLR-2/4 could represent a novel therapeutic target for the prevention and possible treatment of patients with acute renal ischemia-reperfusion injury.


Assuntos
Injúria Renal Aguda/fisiopatologia , Biglicano/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais/fisiologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Injúria Renal Aguda/imunologia , Animais , Biglicano/sangue , Western Blotting , Quimiocinas/sangue , Citocinas/sangue , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/imunologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
13.
FEBS J ; 280(10): 2165-79, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23350913

RESUMO

An emerging body of evidence indicates that secreted proteoglycans act as signaling molecules, in addition to their canonical function in maintaining and regulating the architecture of various extracellular matrices. Proteoglycans interact with a number of receptors that regulate growth, motility and immune response. In part, as a consequence of their complex structure, proteoglycans can induce crosstalk among various families of receptors and can also interact with natural receptor ligands, often blocking and sequestering their bioactivity. In their soluble form, originating from either partial proteolytic processing or through de novo synthesis by activated cells, some proteoglycans can become potent danger signals, denoting tissue stress and injury. Recently, it has been shown that proteoglycans, especially those belonging to the small leucine-rich and hyaluronan-binding gene families as well as the glycosaminoglycan hyaluronan, act as endogenous ligands of the toll-like receptors, a group of central receptors regulating innate immunity. Furthermore, proteoglycans can activate intracellular inflammasomes and trigger sterile inflammation. In this review, we critically assess the signaling events induced by the proteoglycans biglycan, decorin, lumican and versican as well as hyaluronan during inflammation. We discuss the intriguing emerging notion that, in spite of structural diversity of biglycan, decorin, versican and hyaluronan, all of them signal through the same toll-like receptors, albeit triggering differential responses and biological outcomes. Finally, we review the modes of action of these endogenous ligands of toll-like receptors and their ability to specifically modify the final signaling events and the inflammatory response.


Assuntos
Inflamação/metabolismo , Proteoglicanas/imunologia , Receptores Imunológicos/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Biglicano/imunologia , Biglicano/metabolismo , Proteoglicanas de Sulfatos de Condroitina/imunologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Decorina/imunologia , Decorina/metabolismo , Imunidade Inata , Inflamação/imunologia , Inflamação/patologia , Interleucina-1beta/imunologia , Sulfato de Queratano/imunologia , Sulfato de Queratano/metabolismo , Lumicana , Camundongos , Proteoglicanas/metabolismo , Receptor Cross-Talk , Receptores Imunológicos/metabolismo , Transdução de Sinais , Solubilidade , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA