Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 17(3): 319-330, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35039683

RESUMO

Standard oral rapamycin (that is, Rapamune) administration is plagued by poor bioavailability and broad biodistribution. Thus, this pleotropic mammalian target of rapamycin (mTOR) inhibitor has a narrow therapeutic window and numerous side effects and provides inadequate protection to transplanted cells and tissues. Furthermore, the hydrophobicity of rapamycin limits its use in parenteral formulations. Here, we demonstrate that subcutaneous delivery via poly(ethylene glycol)-b-poly(propylene sulfide) polymersome nanocarriers significantly alters rapamycin's cellular biodistribution to repurpose its mechanism of action for tolerance, instead of immunosuppression, and minimize side effects. While oral rapamycin inhibits T cell proliferation directly, subcutaneously administered rapamycin-loaded polymersomes modulate antigen presenting cells in lieu of T cells, significantly improving maintenance of normoglycemia in a clinically relevant, major histocompatibility complex-mismatched, allogeneic, intraportal (liver) islet transplantation model. These results demonstrate the ability of a rationally designed nanocarrier to re-engineer the immunosuppressive mechanism of a drug by controlling cellular biodistribution.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Transplante das Ilhotas Pancreáticas , Imunossupressores/farmacologia , Sirolimo/farmacologia , Distribuição Tecidual
2.
Adv Ther (Weinh) ; 4(4)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34485684

RESUMO

Upon exposure to blood, a corona of proteins adsorbs to nanocarrier surfaces to confer a biological identity that interfaces with the immune system. While the nanocarrier surface chemistry has long been the focus of protein corona formation, the influence of nanostructure has remained unclear despite established influences on biodistribution, clearance, and inflammation. Here, combinations of nanocarrier morphology and surface chemistry are engineered to i) achieve compositionally distinct protein coatings in human blood and ii) control protein-mediated interactions with the immune system. A library of nine PEGylated nanocarriers differing in their combination of morphology (spheres, vesicles, and cylinders) and surface chemistry (methoxy, hydroxyl, and phosphate) are synthesized to represent properties of therapeutic and biomimetic delivery vehicles. Analysis by quantitative label-free proteomic techniques reveal that specific surface chemistry and morphology combinations adsorb unique protein signatures from human blood, resulting in differential complement activation and elicitation of distinct proinflammatory cytokine responses. Furthermore, nanocarrier morphology is shown to primarily influence uptake and clearance by human monocytes, macrophages, and dendritic cells. This comprehensive analysis provides mechanistic insights into rational design choices that impact the immunological identity of nanocarriers in human blood, which can be leveraged to engineer drug delivery vehicles for precision medicine and immunotherapy.

3.
Curr Opin Biotechnol ; 66: 59-68, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32682272

RESUMO

Cardiovascular disease (CVD) is a leading cause of global mortality, accounting for pathologies that are primarily of atherosclerotic origin and driven by specific cell populations. A need exists for effective, non-invasive methods to assess the risk of potentially fatal major adverse cardiovascular events (MACE) before occurrence and to monitor post-interventional outcomes such as tissue regeneration. Molecular imaging has widespread applications in CVD diagnostic assessment, through modalities including magnetic resonance imaging (MRI), positron emission tomography (PET), and acoustic imaging methods. However, current gold-standard small molecule contrast agents are not cell-specific, relying on non-specific uptake to facilitate imaging of biologic processes. Nanomaterials can be engineered for targeted delivery to specific cell populations, and several nanomaterial systems have been developed for pre-clinical molecular imaging. Here, we review recent advances in nanoparticle-mediated approaches for imaging of cellular processes in cardiovascular disease, focusing on efforts to detect inflammation, assess lipid accumulation, and monitor tissue regeneration.


Assuntos
Doenças Cardiovasculares , Nanopartículas , Doenças Cardiovasculares/diagnóstico por imagem , Emprego , Humanos , Imageamento por Ressonância Magnética , Imagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA