Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 8(18): eabm4131, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35507667

RESUMO

Understanding variability in the size and location of large earthquakes along subduction margins is crucial for evaluating seismic and tsunami hazards. We present a coseismic slip model for the 2021 M8.2 Chignik earthquake and investigate the relationship of this earthquake to previous major events in the Alaska Peninsula region and to interseismic coupling. Stress changes from the 2020 M7.8 Simeonof event triggered the Chignik event, and together, the earthquakes partially filled an unruptured section along a 3000-km subduction margin that has experienced a series of ruptures along almost its entire length over the past century. Variations in coupling and structural characteristics may make the region more prone to nucleating M7 to M8 events rather than larger M > 8.5 earthquakes. Stress changes and rupture areas suggest that the two recent earthquakes may be part of an 80-year-long rupture cascade and may have advanced seismic hazard in the region.

2.
Rev Geophys ; 58(3): e2019RG000672, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32879921

RESUMO

Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea-level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea-level change. Here we review the individual processes which lead to sea-level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea-level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea-level observation network-particularly as related to satellite observations-in the improved scientific understanding of the contributors to regional sea-level change.

3.
Geophys Res Lett ; 47(22): e2020GL089800, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33518831

RESUMO

The retreat of glaciers in response to global warming has the potential to trigger landslides in glaciated regions around the globe. Landslides that enter fjords or lakes can cause tsunamis, which endanger people and infrastructure far from the landslide itself. Here we document the ongoing movement of an unstable slope (total volume of 455 × 106 m3) in Barry Arm, a fjord in Prince William Sound, Alaska. The slope moved rapidly between 2010 and 2017, yielding a horizontal displacement of 120 m, which is highly correlated with the rapid retreat and thinning of Barry Glacier. Should the entire unstable slope collapse at once, preliminary tsunami modeling suggests a maximum runup of 300 m near the landslide, which may have devastating impacts on local communities. Our findings highlight the need for interdisciplinary studies of recently deglaciated fjords to refine our understanding of the impact of climate change on landslides and tsunamis.

4.
Sensors (Basel) ; 15(12): 30525-38, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26690157

RESUMO

In southern Tibet, ongoing vertical and horizontal motions due to the collision between India and Eurasia are monitored by large numbers of global positioning system (GPS) continuous and campaign sites installed in the past decade. Displacements measured by GPS usually include tectonic deformation as well as non-tectonic, time-dependent signals. To estimate the regional long-term tectonic deformation using GPS more precisely, seasonal elastic deformation signals associated with surface loading must be removed from the observations. In this study, we focus on seasonal variation in vertical and horizontal motions of southern Tibet by performing a joint analysis of GRACE (Gravity Recovery and Climate Experiment) and GPS data, not only using continuous sites but also GPS campaign-mode sites. We found that the GPS-observed and GRACE-modeled seasonal oscillations are in good agreements, and a seasonal displacement model demonstrates that the main reason for seasonal variations in southern Tibet is from the summer monsoon and its precipitation. The biggest loading appears from July to August in the summer season. Vertical deformations observed by GPS and modeled by GRACE are two to three times larger than horizontal oscillations, and the north components demonstrate larger amplitudes than the east components. We corrected the GPS position time series using the GRACE-modeled seasonal variations, which gives significant reductions in the misfit and weighted root-mean-squares (WRMS). Misfit (χ2 divided by degree of freedom) reductions for campaign sites range between 20% and 56% for the vertical component, and are much smaller for the horizontal components. Moreover, time series of continuous GPS (cGPS) sites near the 2015 Nepal earthquakes must be corrected using appropriate models of seasonal loading for analyzing postseismic deformation to avoid biasing estimates of the postseismic relaxation.

5.
Nature ; 472(7341): 48-9, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21475193
6.
Science ; 300(5622): 1113-8, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12750512

RESUMO

The MW (moment magnitude) 7.9 Denali fault earthquake on 3 November 2002 was associated with 340 kilometers of surface rupture and was the largest strike-slip earthquake in North America in almost 150 years. It illuminates earthquake mechanics and hazards of large strike-slip faults. It began with thrusting on the previously unrecognized Susitna Glacier fault, continued with right-slip on the Denali fault, then took a right step and continued with right-slip on the Totschunda fault. There is good correlation between geologically observed and geophysically inferred moment release. The earthquake produced unusually strong distal effects in the rupture propagation direction, including triggered seismicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA