Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 14(19): 13583-13590, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665488

RESUMO

For undoped SnO2, room temperature ferromagnetism could be seen uniquely in 2-dimensional configurations, particularly in ultra-thin films (whose thickness is ideally below 100 nm). Both bulk samples and nano-powders of pristine SnO2 are diamagnetic, indicating that a 2D surface is a key point in shaping up the magnetic properties in SnO2. As a complement to our experiments, we have performed a series of quantum-mechanical calculations for the bulk rutile-structure SnO2 as well as its (001) and (101) surfaces. The calculations included several atomic configurations with and without vacancies in/under the studied surfaces. The stability of the non-magnetic ground state of rutile SnO2 bulk was cross-checked and confirmed by its phonon spectrum computed within the harmonic approximation. Regarding the surfaces, the bulk-like (001) surface containing Sn vacancies has turned out to be ferromagnetic, while the shift of Sn vacancies under the surface resulted in a more complex ferrimagnetic state. The bulk-like (001) surface without vacancies and that with the O vacancies are predicted to be non-magnetic. Regarding the (101) surfaces, those terminated by a single layer of oxygen atoms and those terminated by tin atoms are non-magnetic, while a surface terminated by two layers of oxygen has turned out to be ferromagnetic.

2.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163858

RESUMO

Quantum computers are reaching one crucial milestone after another. Motivated by their progress in quantum chemistry, we performed an extensive series of simulations of quantum-computer runs that were aimed at inspecting the best-practice aspects of these calculations. In order to compare the performance of different setups, the ground-state energy of the hydrogen molecule was chosen as a benchmark for which the exact solution exists in the literature. Applying the variational quantum eigensolver (VQE) to a qubit Hamiltonian obtained by the Bravyi-Kitaev transformation, we analyzed the impact of various computational technicalities. These included (i) the choice of the optimization methods, (ii) the architecture of the quantum circuits, as well as (iii) the different types of noise when simulating real quantum processors. On these, we eventually performed a series of experimental runs as a complement to our simulations. The simultaneous perturbation stochastic approximation (SPSA) and constrained optimization by linear approximation (COBYLA) optimization methods clearly outperformed the Nelder-Mead and Powell methods. The results obtained when using the Ry variational form were better than those obtained when the RyRz form was used. The choice of an optimum entangling layer was sensitively interlinked with the choice of the optimization method. The circular entangling layer was found to worsen the performance of the COBYLA method, while the full-entangling layer improved it. All four optimization methods sometimes led to an energy that corresponded to an excited state rather than the ground state. We also show that a similarity analysis of measured probabilities can provide a useful insight.

3.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055269

RESUMO

New approaches into computational quantum chemistry can be developed through the use of quantum computing. While universal, fault-tolerant quantum computers are still not available, and we want to utilize today's noisy quantum processors. One of their flagship applications is the variational quantum eigensolver (VQE)-an algorithm for calculating the minimum energy of a physical Hamiltonian. In this study, we investigate how various types of errors affect the VQE and how to efficiently use the available resources to produce precise computational results. We utilize a simulator of a noisy quantum device, an exact statevector simulator, and physical quantum hardware to study the VQE algorithm for molecular hydrogen. We find that the optimal method of running the hybrid classical-quantum optimization is to: (i) allow some noise in intermediate energy evaluations, using fewer shots per step and fewer optimization iterations, but ensure a high final readout precision; (ii) emphasize efficient problem encoding and ansatz parametrization; and (iii) run all experiments within a short time-frame, avoiding parameter drift with time. Nevertheless, current publicly available quantum resources are still very noisy and scarce/expensive, and even when using them efficiently, it is quite difficult to perform trustworthy calculations of molecular energies.

4.
Materials (Basel) ; 14(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34361349

RESUMO

We performed a quantum-mechanical molecular-dynamics (MD) study of Fe3Al with and without hydrogen atoms under conditions of uniaxial deformation up to the point of fracture. Addressing a long-lasting problem of hydrogen-induced brittleness of iron-aluminides under ambient conditions, we performed our density-functional-theory (DFT) MD simulations for T = 300 K (room temperature). Our MD calculations include a series of H concentrations ranging from 0.23 to 4 at.% of H and show a clear preference of H atoms for tetrahedral-like interstitial positions within the D03 lattice of Fe3Al. In order to shed more light on these findings, we performed a series of static lattice-simulations with the H atoms located in different interstitial sites. The H atoms in two different types of octahedral sites (coordinated by either one Al and five Fe atoms or two Al and four Fe atoms) represent energy maxima. Our structural relaxation of the H atoms in the octahedral sites lead to minimization of the energy when the H atom moved away from this interstitial site into a tetrahedral-like position with four nearest neighbors representing an energy minimum. Our ab initio MD simulations of uniaxial deformation along the ⟨001⟩ crystallographic direction up to the point of fracture reveal that the hydrogen atoms are located at the newly-formed surfaces of fracture planes even for the lowest computed H concentrations. The maximum strain associated with the fracture is then lower than that of H-free Fe3Al. We thus show that the hydrogen-related fracture initiation in Fe3Al in the case of an elastic type of deformation as an intrinsic property which is active even if all other plasticity mechanism are absent. The newly created fracture surfaces are partly non-planar (not atomically flat) due to thermal motion and, in particular, the H atoms creating locally different environments.

5.
Materials (Basel) ; 14(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34300885

RESUMO

Although the general instability of the iron nitride γ'-Fe4N with respect to other phases at high pressure is well established, the actual type of phase transitions and equilibrium conditions of their occurrence are, as of yet, poorly investigated. In the present study, samples of γ'-Fe4N and mixtures of α Fe and γ'-Fe4N powders have been heat-treated at temperatures between 250 and 1000 °C and pressures between 2 and 8 GPa in a multi-anvil press, in order to investigate phase equilibria involving the γ' phase. Samples heat-treated at high-pressure conditions, were quenched, subsequently decompressed, and then analysed ex situ. Microstructure analysis is used to derive implications on the phase transformations during the heat treatments. Further, it is confirmed that the Fe-N phases in the target composition range are quenchable. Thus, phase proportions and chemical composition of the phases, determined from ex situ X-ray diffraction data, allowed conclusions about the phase equilibria at high-pressure conditions. Further, evidence for the low-temperature eutectoid decomposition γ'→α+ε' is presented for the first time. From the observed equilibria, a P-T projection of the univariant equilibria in the Fe-rich portion of the Fe-N system is derived, which features a quadruple point at 5 GPa and 375 °C, above which γ'-Fe4N is thermodynamically unstable. The experimental work is supplemented by ab initio calculations in order to discuss the relative phase stability and energy landscape in the Fe-N system, from the ground state to conditions accessible in the multi-anvil experiments. It is concluded that γ'-Fe4N, which is unstable with respect to other phases at 0 K (at any pressure), has to be entropically stabilised in order to occur as stable phase in the system. In view of the frequently reported metastable retention of the γ' phase during room temperature compression experiments, energetic and kinetic aspects of the polymorphic transition γ'⇌ε' are discussed.

6.
Materials (Basel) ; 14(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499093

RESUMO

We have performed a quantum-mechanical study of a series of stoichiometric Ni2MnSn structures focusing on pressure-induced changes in their magnetic properties. Motivated by the facts that (i) our calculations give the total magnetic moment of the defect-free stoichiometric Ni2MnSn higher than our experimental value by 12.8% and (ii) the magnetic state is predicted to be more sensitive to hydrostatic pressures than seen in our measurements, our study focused on the role of point defects, in particular Mn-Ni, Mn-Sn and Ni-Sn swaps in the stoichiometric Ni2MnSn. For most defect types we also compared states with both ferromagnetic (FM) and anti-ferromagnetic (AFM) coupling between (i) the swapped Mn atoms and (ii) those on the Mn sublattice. Our calculations show that the swapped Mn atoms can lead to magnetic moments nearly twice smaller than those in the defect-free Ni2MnSn. Further, the defect-containing states exhibit pressure-induced changes up to three times larger but also smaller than those in the defect-free Ni2MnSn. Importantly, we find both qualitative and quantitative differences in the pressure-induced changes of magnetic moments of individual atoms even for the same global magnetic state. Lastly, despite of the fact that the FM-coupled and AFM-coupled states have often very similar formation energies (the differences only amount to a few meV per atom), their structural and magnetic properties can be very different.

7.
Materials (Basel) ; 13(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143267

RESUMO

We performed a quantum-mechanical study of the effect of antiphase boundaries (APBs) on structural, magnetic and vibrational properties of Fe3Al compound. The studied APBs have the {001} crystallographic orientation of their sharp interfaces and they are characterized by a 1/2〈111〉 shift of atomic planes. There are two types of APB interfaces formed by either two adjacent planes of Fe atoms or by two adjacent planes containing both Fe and Al atoms. The averaged APB interface energy is found to be 80 mJ/m2 and we estimate the APB interface energy of each of the two types of interfaces to be within the range of 40-120 mJ/m2. The studied APBs affect local magnetic moments of Fe atoms near the defects, increasing magnetic moments of FeII atoms by as much as 11.8% and reducing those of FeI atoms by up to 4%. When comparing phonons in the Fe3Al with and without APBs within the harmonic approximation, we find a very strong influence of APBs. In particular, we have found a significant reduction of gap in frequencies that separates phonon modes below 7.9 THz and above 9.2 THz in the defect-free Fe3Al. All the APBs-induced changes result in a higher free energy, lower entropy and partly also a lower harmonic phonon energy in Fe3Al with APBs when compared with those in the defect-free bulk Fe3Al.

8.
Nanomaterials (Basel) ; 10(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316217

RESUMO

We present a quantum-mechanical study of silver decahedral nanoclusters and nanoparticles containing from 1 to 181 atoms in their static atomic configurations corresponding to the minimum of the ab initio computed total energies. Our thermodynamic analysis compares T = 0 K excess energies (without any excitations) obtained from a phenomenological approach, which mostly uses bulk-related properties, with excess energies from ab initio calculations of actual nanoclusters/nanoparticles. The phenomenological thermodynamic modeling employs (i) the bulk reference energy, (ii) surface energies obtained for infinite planar (bulk-related) surfaces and (iii) the bulk atomic volume. We show that it can predict the excess energy (per atom) of nanoclusters/nanoparticles containing as few as 7 atoms with the error lower than 3%. The only information related to the nanoclusters/nanoparticles of interest, which enters the phenomenological modeling, is the number of atoms in the nanocluster/nanoparticle, the shape and the crystallographic orientation(s) of facets. The agreement between both approaches is conditioned by computing the bulk-related properties with the same computational parameters as in the case of the nanoclusters/nanoparticles but, importantly, the phenomenological approach is much less computationally demanding. Our work thus indicates that it is possible to substantially reduce computational demands when computing excess energies of nanoclusters and nanoparticles by ab initio methods.

9.
Nanomaterials (Basel) ; 10(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878105

RESUMO

We have performed a quantum-mechanical study of a B2 phase of Fe 70 Al 30 alloy with and without antiphase boundaries (APBs) with the {001} crystallographic orientation of APB interfaces. We used a supercell approach with the atoms distributed according to the special quasi-random structure (SQS) concept. Our study was motivated by experimental findings by Murakami et al. (Nature Comm. 5 (2014) 4133) who reported significantly higher magnetic flux density from A2-phase interlayers at the thermally-induced APBs in Fe 70 Al 30 and suggested that the ferromagnetism is stabilized by the disorder in the A2 phase. Our computational study of sharp APBs (without any A2-phase interlayer) indicates that they have moderate APB energies (≈0.1 J/m 2 ) and cannot explain the experimentally detected increase in the ferromagnetism because they often induce a ferro-to-ferrimagnetic transition. When studying thermal APBs, we introduce a few atomic layers of A2 phase of Fe 70 Al 30 into the interface of sharp APBs. The averaged computed magnetic moment of Fe atoms in the whole B2/A2 nanocomposite is then increased by 11.5% w.r.t. the B2 phase. The A2 phase itself (treated separately as a bulk) has the total magnetic moment even higher, by 17.5%, and this increase also applies if the A2 phase at APBs is sufficiently thick (the experimental value is 2-3 nm). We link the changes in the magnetism to the facts that (i) the Al atoms in the first nearest neighbor (1NN) shell of Fe atoms nonlinearly reduce their magnetic moments and (ii) there are on average less Al atoms in the 1NN shell of Fe atoms in the A2 phase. These effects synergically combine with the influence of APBs which provide local atomic configurations not existing in an APB-free bulk. The identified mechanism of increasing the magnetic properties by introducing APBs with disordered phases can be used as a designing principle when developing new magnetic materials.

10.
Materials (Basel) ; 12(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795289

RESUMO

We present a quantum-mechanical study of thermodynamic, structural, elastic, and magnetic properties of selected antiphase boundaries (APBs) in Fe 3 Al with the D0 3 crystal structure with and without Cr atoms. The computed APBs are sharp (not thermal), and they have {001} crystallographic orientation. They are characterized by a mutual shift of grains by 1/2〈100〉a where a is the lattice parameter of a cube-shaped 16-atom elementary cell of Fe 3 Al, i.e., they affect the next nearest neighbors (APB-NNN type, also called APB-D0 3 ). Regarding clean APBs in Fe 3 Al, the studied ones have only a very minor impact on the structural and magnetic properties, including local magnetic moments, and the APB energy is rather low, about 80 ± 25 mJ/m 2 . Interestingly, they have a rather strong impact on the anisotropic (tensorial) elastic properties with the APB-induced change from a cubic symmetry to a tetragonal one, which is sensitively reflected by the directional dependence of linear compressibility. The Cr atoms have a strong impact on magnetic properties and a complex influence on the energetics of APBs. In particular, the Cr atoms in Fe 3 Al exhibit clustering tendencies even in the presence of APBs and cause a transition from a ferromagnetic (Cr-free Fe 3 Al) into a ferrimagnetic state. The Fe atoms with Cr atoms in their first coordination shell have their local atomic magnetic moments reduced. This reduction is synergically enhanced (to the point when Fe atoms are turned non-magnetic) when the influence of clustering of Cr atoms is combined with APBs, which offer specific atomic environments not existing in the APB-free bulk Fe 3 Al. The impact of Cr atoms on APB energies in Fe 3 Al is found to be ambiguous, including reduction, having a negligible influence or increasing APB energies depending on the local atomic configuration of Cr atoms, as well as their concentration.

11.
Materials (Basel) ; 12(9)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052537

RESUMO

We have performed quantum-mechanical calculations to examine the impact of disorder on thermodynamic, structural and electronic (magnetic) properties of Fe-Al systems with vacancies. A series of supercells was used and their properties were computed employing density-functional theory (DFT) as implemented in the VASP package. Our case study is primarily aimed at a disordered solid solution Fe 81.25 Al 18.75 but we have compared our results also with those obtained for the ordered Fe 3 Al intermetallic compound for which experimental data exist in literature. Both phases are found in Fe-Al-based superalloys. The Fe-18.75at.%Al solid solution was simulated using special quasirandom structures (SQS) in three different disordered states with a different distribution of Al atoms. In particular, we have considered a general disordered case (an A2-like variant), the case without the first nearest neighbor Al-Al pairs (a B2-like distribution of atoms) and also the case without both the first and second nearest neighbor Al-Al pairs (the D0 3 -like variant, in fact, an Fe-rich Fe 3 Al phase). The vacancy formation energies as well as the volumes of (fully relaxed) supercells with vacancies showed a large scatter for the disordered systems. The vacancy formation energies decrease with increasing concentration of Al atoms in the first coordination shell around the vacancy (an anti-correlation) for all disordered cases studied. The computed volumes of vacancies were found significantly lower (by 25-60%) when compared with the equilibrium volume of the missing atoms in their elemental states. Lastly, we have analyzed interactions between the vacancies and the Fe atoms and evaluated vacancy-induced changes in local magnetic moments of Fe atoms.

12.
Nanomaterials (Basel) ; 8(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558137

RESUMO

Using quantum-mechanical calculations of second- and third-order elastic constants for YN and ScN with the rock-salt (B1) structure, we predict that these materials change the fundamental type of their elastic anisotropy by rather moderate hydrostatic pressures of a few GPa. In particular, YN with its zero-pressure elastic anisotropy characterized by the Zener anisotropy ratio A Z = 2 C 44 / ( C 11 - C 12 ) = 1.046 becomes elastically isotropic at the hydrostatic pressure of 1.2 GPa. The lowest values of the Young's modulus (so-called soft directions) change from 〈100〉 (in the zero-pressure state) to the 〈111〉 directions (for pressures above 1.2 GPa). It means that the crystallographic orientations of stiffest (also called hard) elastic response and those of the softest one are reversed when comparing the zero-pressure state with that for pressures above the critical level. Qualitatively, the same type of reversal is predicted for ScN with the zero-pressure value of the Zener anisotropy factor A Z = 1.117 and the critical pressure of about 6.5 GPa. Our predictions are based on both second-order and third-order elastic constants determined for the zero-pressure state but the anisotropy change is then verified by explicit calculations of the second-order elastic constants for compressed states. Both materials are semiconductors in the whole range of studied pressures. Our phonon calculations further reveal that the change in the type of the elastic anisotropy has only a minor impact on the vibrational properties. Our simulations of biaxially strained states of YN demonstrate that a similar change in the elastic anisotropy can be achieved also under stress conditions appearing, for example, in coherently co-existing nanocomposites such as superlattices. Finally, after selecting ScN and PdN (both in B1 rock-salt structure) as a pair of suitable candidate materials for such a superlattice (due to the similarity of their lattice parameters), our calculations of such a coherent nanocomposite results again in a reversed elastic anisotropy (compared with the zero-pressure state of ScN).

13.
Nanomaterials (Basel) ; 8(12)2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30558300

RESUMO

We applied first-principles electronic structure calculations to study structural, thermodynamic and elastic properties of nanocomposites exhibiting nearly perfect match of constituting phases. In particular, two combinations of transition-metal disilicides and one pair of magnetic phases containing the Fe and Al atoms with different atomic ordering were considered. Regarding the disilicides, nanocomposites MoSi 2 /WSi 2 with constituents crystallizing in the tetragonal C11 b structure and TaSi 2 /NbSi 2 with individual phases crystallizing in the hexagonal C40 structure were simulated. Constituents within each pair of materials exhibit very similar structural and elastic properties and for their nanocomposites we obtained ultra-low (nearly zero) interface energy (within the error bar of our calculations, i.e., about 0.005 J/m 2 ). The interface energy was found to be nearly independent on the width of individual constituents within the nanocomposites and/or crystallographic orientation of the interfaces. As far as the nanocomposites containing Fe and Al were concerned, we simulated coherent superlattices formed by an ordered Fe 3 Al intermetallic compound and a disordered Fe-Al phase with 18.75 at.% Al, the α -phase. Both phases were structurally and elastically quite similar but the disordered α -phase lacked a long-range periodicity. To determine the interface energy in these nanocomposites, we simulated seven different distributions of atoms in the α -phase interfacing the Fe 3 Al intermetallic compound. The resulting interface energies ranged from ultra low to low values, i.e., from 0.005 to 0.139 J/m 2 . The impact of atomic distribution on the elastic properties was found insignificant but local magnetic moments of the iron atoms depend sensitively on the type and distribution of surrounding atoms.

14.
Nanomaterials (Basel) ; 8(12)2018 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-30558362

RESUMO

Quantum-mechanical calculations are applied to examine magnetic and electronic properties of phases appearing in binary Fe-Al-based nanocomposites. The calculations are carried out using the Vienna Ab-initio Simulation Package which implements density functional theory and generalized gradient approximation. The focus is on a disordered solid solution with 18.75 at. % Al in body-centered-cubic ferromagnetic iron, so-called α -phase, and an ordered intermetallic compound Fe 3 Al with the D0 3 structure. In order to reveal the impact of the actual atomic distribution in the disordered Fe-Al α -phase three different special quasi-random structures with or without the 1st and/or 2nd nearest-neighbor Al-Al pairs are used. According to our calculations, energy decreases when eliminating the 1st and 2nd nearest neighbor Al-Al pairs. On the other hand, the local magnetic moments of the Fe atoms decrease with Al concentration in the 1st coordination sphere and increase if the concentration of Al atoms increases in the 2nd one. Furthermore, when simulating Fe-Al/Fe 3 Al nanocomposites (superlattices), changes of local magnetic moments of the Fe atoms up to 0.5 µ B are predicted. These changes very sensitively depend on both the distribution of atoms and the crystallographic orientation of the interfaces.

15.
Materials (Basel) ; 11(11)2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428570

RESUMO

Using quantum-mechanical methods we calculate and analyze (tensorial) anisotropic elastic properties of the ground-state configurations of interface states associated with Σ 5(210) grain boundaries (GBs) in cubic L1 2 -structure Ni 3 Si. We assess the mechanical stability of interface states with two different chemical compositions at the studied GB by checking rigorous elasticity-based Born stability criteria. In particular, we show that a GB variant containing both Ni and Si atoms at the interface is unstable with respect to shear deformation (one of the elastic constants, C 55 , is negative). This instability is found for a rectangular-parallelepiped supercell obtained when applying standard coincidence-lattice construction. Our elastic-constant analysis allowed us to identify a shear-deformation mode reducing the energy and, eventually, to obtain mechanically stable ground-state characterized by a shear-deformed parallelepiped supercell. Alternatively, we tested a stabilization of this GB interface state by Al substituents replacing Si atoms at the GB. We further discuss an atomistic origin of this instability in terms of the crystal orbital Hamilton population (COHP) and phonon dispersion calculations. We find that the unstable GB variant shows a very strong interaction between the Si atoms in the GB plane and Ni atoms in the 3rd plane off the GB interface. However, such bond reinforcement results in weakening of interaction between the Ni atoms in the 3rd plane and the Si atoms in the 5th plane making this GB variant mechanically unstable.

16.
Nanomaterials (Basel) ; 8(11)2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30352963

RESUMO

We present an ab initio and atomistic study of the stress-strain response and elastic stability of the ordered Fe 3 Al compound with the D0 3 structure and a disordered Fe-Al solid solution with 18.75 at.% Al as well as of a nanocomposite consisting of an equal molar amount of both phases under uniaxial loading along the [001] direction. The tensile tests were performed under complex conditions including the effect of the lateral stress on the tensile strength and temperature effect. By comparing the behavior of individual phases with that of the nanocomposite we find that the disordered Fe-Al phase represents the weakest point of the studied nanocomposite in terms of tensile loading. The cleavage plane of the whole nanocomposite is identical to that identified when loading is applied solely to the disordered Fe-Al phase. It also turns out that the mechanical stability is strongly affected by softening of elastic constants C ' and/or C 66 and by corresponding elastic instabilities. Interestingly, we found that uniaxial straining of the ordered Fe 3 Al with the D0 3 structure leads almost to hydrostatic loading. Furthermore, increasing lateral stress linearly increases the tensile strength. This was also confirmed by molecular dynamics simulations employing Embedded Atom Method (EAM) potential. The molecular dynamics simulations also revealed that the thermal vibrations significantly decrease the tensile strength.

17.
Materials (Basel) ; 11(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223499

RESUMO

The intermetallic compound Fe 2 AlTi (alternatively Fe 2 TiAl) is an important phase in the ternary Fe-Al-Ti phase diagram. Previous theoretical studies showed a large discrepancy of approximately an order of magnitude between the ab initio computed magnetic moments and the experimentally measured ones. To unravel the source of this discrepancy, we analyze how various mechanisms present in realistic materials such as residual strain effects or deviations from stoichiometry affect magnetism. Since in spin-unconstrained calculations the system always evolves to the spin configuration which represents a local or global minimum in the total energy surface, finite temperature spin effects are not well described. We therefore turn the investigation around and use constrained spin calculations, fixing the global magnetic moment. This approach provides direct insight into local and global energy minima (reflecting metastable and stable spin phases) as well as the curvature of the energy surface, which correlates with the magnetic entropy and thus the magnetic configuration space accessible at finite temperatures. Based on this approach, we show that deviations from stoichiometry have a huge impact on the local magnetic moment and can explain the experimentally observed low magnetic moments.

18.
Materials (Basel) ; 11(9)2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150535

RESUMO

We use quantum-mechanical calculations to test a hypothesis of Glover et al. (J. Mag. Mag. Mater. 15 (1980) 699) that Co atoms in the Fe 2 AlCo compound have on average 3 Fe and 3 Co atoms in their second nearest neighbor shell. We have simulated four structural configurations of Fe 2 AlCo including the full Heusler structure, inverse Heusler polymorph and two other phases matching this idea. The highest thermodynamic stability at T = 0 K is indeed predicted for one of the phases with the distribution of atoms according to Glover and et al. However, small energy differences among three of the studied polymorphs lead to a disordered CsCl-structure-like (B2-like) phase at elevated temperatures. The fourth variant, the full Heusler phase, is predicted to be mechanically unstable. The global magnetic states are predicted to be ferromagnetic but local magnetic moments of Fe and Co atoms sensitively depend on the composition of the first and second coordination shells.

19.
Sci Technol Adv Mater ; 18(1): 273-282, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28567173

RESUMO

Grain boundaries (GBs) represent one of the most important types of defects in solids and their instability leads to catastrophic failures in materials. Grain boundaries are challenging for theoretical studies because of their distorted atomic structure. Fortunately, quantum-mechanical methods can reliably compute their properties. We calculate and analyze (tensorial) anisotropic elastic properties of periodic approximants of interface states associated with GBs in one of the most important intermetallic compounds for industrial applications, Ni3Al, appearing in Ni-based superalloys. Focusing on the Σ5(210) GBs as a case study, we assess the mechanical stability of the corresponding interface states by checking rigorous elasticity-based Born stability criteria. The critical elastic constant is found three-/five-fold softer contributing thus to the reduction of the mechanical stability of Ni3Al polycrystals (experiments show their GB-related failure). The tensorial elasto-chemical complexity of interface states associated with the studied GBs exemplifies itself in high sensitivity of elastic constants to the GB composition. As another example we study the impact caused by Si atoms segregating into the atomic layers close to the GB and substituting Al atoms. If wisely exploited, our study paves the way towards solute-controlled design of GB-related interface states with controlled stability and/or tensorial properties.

20.
Bioinspir Biomim ; 11(5): 055006, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27609556

RESUMO

The crustacean cuticle is a composite material that covers the whole animal and forms the continuous exoskeleton. Nano-fibers composed of chitin and protein molecules form most of the organic matrix of the cuticle that, at the macroscale, is organized in up to eight hierarchical levels. At least two of them, the exo- and endocuticle, contain a mineral phase of mainly Mg-calcite, amorphous calcium carbonate and phosphate. The high number of hierarchical levels and the compositional diversity provide a high degree of freedom for varying the physical, in particular mechanical, properties of the material. This makes the cuticle a versatile material ideally suited to form a variety of skeletal elements that are adapted to different functions and the eco-physiological strains of individual species. This review presents our recent analytical, experimental and theoretical studies on the cuticle, summarising at which hierarchical levels structure and composition are modified to achieve the required physical properties. We describe our multi-scale hierarchical modeling approach based on the results from these studies, aiming at systematically predicting the structure-composition-property relations of cuticle composites from the molecular level to the macro-scale. This modeling approach provides a tool to facilitate the development of optimized biomimetic materials within a knowledge-based design approach.


Assuntos
Exoesqueleto/química , Exoesqueleto/ultraestrutura , Isópodes/anatomia & histologia , Adaptação Fisiológica , Exoesqueleto/anatomia & histologia , Exoesqueleto/fisiologia , Animais , Evolução Biológica , Biomimética , Carbonato de Cálcio , Quitina , Isópodes/fisiologia , Minerais , Modelos Anatômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA