Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int Rev Immunol ; 42(5): 323-333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35212593

RESUMO

Rising obesity levels, worldwide, are resulting in substantial increases in cardiovascular disease, diabetes, kidney disease, musculoskeletal disorders, and certain cancers, and obesity-associated illnesses are estimated to cause ∼4 million deaths worldwide per year. A common theme in this disease epidemic is the chronic systemic inflammation that accompanies obesity. CD4+ Foxp3+ regulatory T cells residing in visceral adipose tissues (VAT Tregs) are a unique immune cell population that play essential functions in restricting obesity-associated systemic inflammation through regulation of adipose tissue homeostasis. The distinct transcriptional program that defines VAT Tregs has been described, but directly linking VAT Treg differentiation and function to improving insulin sensitivity has proven more complex. Here we review new findings which have clarified how VAT Tregs differentiate, and how distinct VAT Treg subsets regulate VAT homeostasis, energy expenditure, and insulin sensitivity.


Assuntos
Resistência à Insulina , Linfócitos T Reguladores , Humanos , Obesidade , Tecido Adiposo , Inflamação , Diferenciação Celular
2.
Immunol Rev ; 300(1): 9-21, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33644866

RESUMO

The conceptualization of adaptive immunity, founded on the observation of immunological memory, has served as the basis for modern vaccination and immunotherapy approaches. This fundamental concept has allowed immunologists to explore mechanisms that enable humoral and cellular lymphocytes to tailor immune response functions to a wide array of environmental insults and remain poised for future pathogenic encounters. Until recently, for T cells it has remained unclear how memory differentiation acquires and sustains a gene expression program that grants a cell with a capacity for a heightened recall response. Recent investigations into this critical question have identified epigenetic programs as a causal molecular mechanism governing T cell subset specification and immunological memory. Here, we outline the studies that have illustrated this concept and posit on how insights into T cell adaptive immunity can be applied to improve upon existing immunotherapies.


Assuntos
Epigênese Genética , Memória Imunológica , Imunidade Adaptativa/genética , Diferenciação Celular , Subpopulações de Linfócitos T
3.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33351782

RESUMO

Interleukin-10 (IL-10) is a critical cytokine used by immune cells to suppress inflammation. Paradoxically, immune cell-derived IL-10 can drive insulin resistance in obesity by suppressing adipocyte energy expenditure and thermogenesis. However, the source of IL-10 necessary for the suppression of adipocyte thermogenesis is unknown. We show here that CD4+Foxp3+ regulatory T cells (Tregs) are a substantial source of IL-10 and that Treg-derived IL-10 can suppress adipocyte beiging. Unexpectedly, Treg-specific loss of IL-10 resulted in increased insulin sensitivity and reduced obesity in high-fat diet-fed male mice. Mechanistically, we determined that Treg-specific loss of the transcription factor Blimp-1, a driver of IL-10 expression by Tregs, phenocopied the Treg-specific IL-10-deficient mice. Loss of Blimp-1 expression in Tregs resulted in reduced ST2+KLRG1+, IL-10-secreting Tregs, particularly in the white adipose tissue. Blimp-1-deficient mice were protected from glucose intolerance, insulin resistance, and diet-induced obesity, through increased white adipose tissue browning. Taken together, our data show that Blimp-1-regulated IL-10 secretion by Tregs represses white adipose tissue beiging to maintain adipose tissue homeostasis.


Assuntos
Resistência à Insulina/imunologia , Resistência à Insulina/fisiologia , Interleucina-10/imunologia , Obesidade/etiologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/fisiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/fisiologia , Tecido Adiposo Bege/imunologia , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/imunologia , Intolerância à Glucose/metabolismo , Interleucina-10/deficiência , Interleucina-10/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Obesidade/imunologia , Obesidade/fisiopatologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/deficiência , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Termogênese/imunologia , Termogênese/fisiologia
4.
J Immunol ; 203(3): 658-664, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201238

RESUMO

Adipose regulatory T cells (aTregs) have emerged as critical cells for the control of local and systemic inflammation. In this study, we show a distinctive role for the transcriptional regulator Id2 in the differentiation, survival, and function of aTregs in mice. Id2 was highly expressed in aTregs compared with high Id3 expression in lymphoid regulatory T cells (Tregs). Treg-specific deletion of Id2 resulted in a substantial decrease in aTregs, whereas Tregs in the spleen and lymph nodes were unaffected. Additionally, loss of Id2 resulted in decreased expression of aTreg-associated markers, including ST2, CCR2, KLRG1, and GATA3. Gene expression analysis revealed that Id2 expression was essential for the survival of aTregs, and loss of Id2 increased cell death in aTregs due to increased Fas expression. Id2-mediated aTreg depletion resulted in increased systemic inflammation, increased inflammatory macrophages and CD8+ effector T cells, and loss of glucose tolerance under standard diet conditions. Thus, we reveal an unexpected and novel function for Id2 in mediating differentiation, survival, and function of aTregs that when lost result in increased metabolic perturbation.


Assuntos
Tecido Adiposo/citologia , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Animais , Contagem de Linfócito CD4 , Linfócitos T CD8-Positivos/imunologia , Morte Celular/genética , Diferenciação Celular/genética , Sobrevivência Celular/genética , Fator de Transcrição GATA3/metabolismo , Inflamação/imunologia , Proteínas Inibidoras de Diferenciação/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR2/metabolismo , Receptores Imunológicos/metabolismo , Linfócitos T Reguladores/imunologia , Receptor fas/metabolismo
5.
Immunology ; 153(2): 238-245, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28892129

RESUMO

Invariant natural killer T (iNKT) cells are adaptive T cells with innate-like characteristics including rapid cytokine production and a proliferative response to stimulation. Development of these cells in the thymus is dependent on expression of the microRNA (miRNA) processing enzyme Dicer, indicating that iNKT cells probably have distinct miRNA requirements for gene regulation during development. The miRNA miR-155 has previously been shown to have numerous roles in T cells, including regulation of proliferation and differentiation, and positive modulation of interferon-γ expression. We examined the role of miR-155 in the development and function of iNKT cells. Using germline-deficient miR-155 mice, we showed that loss of miR-155 resulted in unchanged iNKT cell frequency and cell number. Although miR-155 was up-regulated in iNKT cells upon activation with α-galactosylceramide, loss of miR-155 did not affect cytokine production or proliferation by iNKT cells. Hence, cytokine production occurs in iNKT cells independently of miR-155 expression.


Assuntos
Proliferação de Células , MicroRNAs/imunologia , Células T Matadoras Naturais/imunologia , Regulação para Cima/imunologia , Animais , Citocinas/genética , Citocinas/imunologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Células T Matadoras Naturais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA