Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e10871, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304269

RESUMO

Conservation translocations are frequently inhibited by extensive dispersal after release, which can expose animals to dispersal-related mortality or Allee effects due to a lack of nearby conspecifics. However, translocation-induced dispersals also provide opportunities to study how animals move across a novel landscape, and how their movements are influenced by landscape configuration and anthropogenic features. Translocation among populations is considered a potential conservation strategy for lesser prairie-chickens (Tympanuchus pallidicinctus). We determined the influence of release area on dispersal frequency by translocated lesser prairie-chickens and measured how lesser prairie-chickens move through grassland landscapes through avoidance of anthropogenic features during their dispersal movements. We translocated 411 lesser prairie-chickens from northwest Kansas to southeastern Colorado and southwestern Kansas in 2016-2019. We used satellite GPS transmitters to track 115 lesser prairie-chickens throughout their post-release dispersal movements. We found that almost all lesser prairie-chickens that survived from their spring release date until June undergo post-translocation dispersal, and there was little variation in dispersal frequency by release area (96% of all tracked birds, 100% in Baca County, Colorado, 94% in Morton County, Kansas, n = 55). Dispersal movements (male: 103 ± 73 km, female: 175 ± 108 km, n = 62) led to diffusion across landscapes, with 69% of birds settling >5 km from their release site. During dispersal movements, translocated lesser prairie-chickens usually travel by a single 3.75 ± 4.95 km dispersal flight per day, selecting for steps that end far from roads and in Conservation Reserve Program (CRP) grasslands. Due to this "stepping stone" method of transit, landscape connectivity is optimized when <5 km separates grassland patches on the landscape. Future persistence of lesser prairie-chicken populations can be aided through conservation of habitat and strategic placement of CRP to maximize habitat connectivity. Dispersal rates suggest that translocation is better suited to objectives for regional, rather than site-specific, population augmentation for this species.

2.
Biometrics ; 79(4): 3941-3953, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37443410

RESUMO

Integrated models are a popular tool for analyzing species of conservation concern. Species of conservation concern are often monitored by multiple entities that generate several datasets. Individually, these datasets may be insufficient for guiding management due to low spatio-temporal resolution, biased sampling, or large observational uncertainty. Integrated models provide an approach for assimilating multiple datasets in a coherent framework that can compensate for these deficiencies. While conventional integrated models have been used to assimilate count data with surveys of survival, fecundity, and harvest, they can also assimilate ecological surveys that have differing spatio-temporal regions and observational uncertainties. Motivated by independent aerial and ground surveys of lesser prairie-chicken, we developed an integrated modeling approach that assimilates density estimates derived from surveys with distinct sources of observational error into a joint framework that provides shared inference on spatio-temporal trends. We model these data using a Bayesian Markov melding approach and apply several data augmentation strategies for efficient sampling. In a simulation study, we show that our integrated model improved predictive performance relative to models for analyzing the surveys independently. We use the integrated model to facilitate prediction of lesser prairie-chicken density at unsampled regions and perform a sensitivity analysis to quantify the inferential cost associated with reduced survey effort.


Assuntos
Animais Selvagens , Animais , Teorema de Bayes , Inquéritos e Questionários , Simulação por Computador , Incerteza
3.
Genome Biol Evol ; 15(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36916502

RESUMO

The Lesser Prairie-Chicken (Tympanuchus pallidicinctus; LEPC) is an iconic North American prairie grouse, renowned for ornate and spectacular breeding season displays. Unfortunately, the species has disappeared across much of its historical range, with corresponding precipitous declines in contemporary population abundance, largely due to climatic and anthropogenic factors. These declines led to a 2022 US Fish and Wildlife decision to identify and list two distinct population segments (DPSs; i.e., northern and southern DPSs) as threatened or endangered under the 1973 Endangered Species Act. Herein, we describe an annotated reference genome that was generated from a LEPC sample collected from the southern DPS. We chose a representative from the southern DPS because of the potential for introgression in the northern DPS, where some populations hybridize with the Greater Prairie-Chicken (Tympanuchus cupido). This new LEPC reference assembly consists of 206 scaffolds, an N50 of 45 Mb, and 15,563 predicted protein-coding genes. We demonstrate the utility of this new genome assembly by estimating genome-wide heterozygosity in a representative LEPC and in related species. Heterozygosity in a LEPC sample was 0.0024, near the middle of the range (0.0003-0.0050) of related species. Overall, this new assembly provides a valuable resource that will enhance evolutionary and conservation genetic research in prairie grouse.


Assuntos
Galinhas , Pradaria , Animais , Espécies em Perigo de Extinção , Evolução Biológica , Heterozigoto
4.
Ecol Evol ; 12(12): e9544, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36466139

RESUMO

Recent studies have documented benefits of small, prescribed fire and wildfire for grassland-dependent wildlife, such as lesser prairie-chickens (Tympanuchus pallidicintus), but wildlife demographic response to the scale and intensity of megafire (wildfire >40,000 ha) in modern, fragmented grasslands remains unknown. Limited available grassland habitat makes it imperative to understand if increasing frequency of megafires could further reduce already declining lesser prairie-chicken populations, or if historical evolutionary interactions with fire make lesser prairie-chickens resilient. To evaluate lesser prairie-chicken demographic response to megafires, we compared lek counts, nest density, and survival rates of adults, nests, and chicks before (2014-2016) and after (2018-2020) a 2017 megafire in the mixed-grass prairie of Kansas, USA (Starbuck fire ~254,000 ha). There was a 67% decline in attending males on leks post-fire and a 57% decline in occupied leks post-fire. Despite population declines as indicated by lek counts, adult female breeding season survival ( S ^ ) was similar pre- ( S ^  = 0.65 ± 0.08 [SE]) and post-fire (0.61 ± 0.08), as was chick survival (pre-fire: 0.23 ± 0.07; post-fire: 0.27 ± 0.11). Nest survival appeared lower post-fire (pre-fire: 0.38 ± 0.06; post-fire: 0.20 ± 0.06), but did not differ at the 95% confidence interval. Nest density of marked females declined 73% in areas burned by megafire. Although lesser prairie-chickens persisted in the study area and we documented minimal effects on most demographic rates, reduced lesser prairie-chicken abundance and reproductive output suggests full recovery may take >3 years. Increased propensity for megafire resulting from suppression of smaller fires, compounded by climate change and woody encroachment, may impose a short-term (3-5 year) threat to already declining lesser prairie-chicken populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA