Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Pediatr ; 11: 1058319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528870

RESUMO

Background and aims: Precision-cut tissue slices (PCTS) are widely used as an ex vivo culture tissue culture technique to study pathogeneses of diseases and drug activities in organs in vitro. A novel application of the PCTS model may be in the field of translational research into cholangiopathies such as biliary atresia. Therefore, the aim of this study was to apply the precision-cut slice technique to human bile duct and gallbladder tissue. Methods: Cystic duct and gallbladder tissue derived from patients undergoing a cholecystectomy were collected, preserved and used for preparation of precision-cut cystic duct slices (PCCDS) and precision-cut gallbladder slices (PCGS). The PCCDS and PCGS were prepared using a mechanical tissue slicer and subsequently incubated for 24 and 48 h respectively in William's Medium E (WME) culture medium. Viability was assessed based on ATP/protein content and tissue morphology [hematoxylin and eosin (H&E) staining]. Results: It was shown that viability, assessed by the ATP/protein content and morphology, of the PCCDS (n = 8) and PCGS (n = 8) could be maintained over the 24 and 48 h incubation period respectively. ATP/protein content of the PCCDS increased significantly from 0.58 ± 0.13 pmol/µg at 0 h to 2.4 ± 0.29 pmol/µg after 24 h incubation (P = .0003). A similar significant increase from 0.94 ± 0.22 pmol/µg at 0 h to 3.7 ± 0.41 pmol/µg after 24 h (P = .0005) and 4.2 ± 0.47 pmol/µg after 48 h (P = .0002) was observed in the PCGS. Morphological assessment of the PCCDS and PCGS showed viable tissue at 0 h and after 24 and 48 h incubation respectively. Conclusion: This study is the first to report on the use of the PCTS model for human gallbladder and cystic duct tissue. PCCDS and PCGS remain viable for an incubation period of at least 24 h, which makes them suitable for research purposes in the field of cholangiopathies, including biliary atresia.

2.
PLoS One ; 18(2): e0279770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730474

RESUMO

INTRODUCTION: First-trimester anatomical screening (FTAS) by ultrasound has been introduced in many countries as screening for aneuploidies, but also as early screening for fetal structural abnormalities. While a lot of emphasis has been put on the detection rates of FTAS, little is known about the performance of quality control programs and the sonographers' learning curve for FTAS. The aims of the study were to evaluate the performance of a score-based quality control system for the FTAS and to assess the learning curves of sonographers by evaluating the images of the anatomical planes that were part of the FTAS protocol. METHODS: Between 2012-2015, pregnant women opting for the combined test in the North-Netherlands were also invited to participate in a prospective cohort study extending the ultrasound investigation to include a first-trimester ultrasound performed according to a protocol. All anatomical planes included in the protocol were documented by pictures stored for each examination in logbooks. The logbooks of six sonographers were independently assessed by two fetal medicine experts. For each sonographer, logbooks of examination 25-50-75 and 100 plus four additional randomly selected logbooks were scored for correct visualization of 12 organ-system planes. A plane specific score of at least 70% was considered sufficient. The intra-class correlation coefficient (ICC), was used to measure inter-assessor agreement for the cut-off scores. Organ-specific learning curves were defined by single-cumulative sum (CUSUM) analysis. RESULTS: Sixty-four logbooks were assessed. Mean duration of the scan was 22 ± 6 minutes and mean gestational age was 12+6 weeks. In total 57% of the logbooks graded as sufficient. Most sufficient scores were obtained for the fetal skull (88%) and brain (70%), while the lowest scores were for the face (29%) and spine (38%). Five sonographers showed a learning curve for the skull and the stomach, four for the brain and limbs, three for the bladder and kidneys, two for the diaphragm and abdominal wall and one for the heart and spine and none for the face and neck. CONCLUSION: Learning curves for FTAS differ per organ system and per sonographer. Although score-based evaluation can validly assess image quality, more dynamic approaches may better reflect clinical performance.


Assuntos
Curva de Aprendizado , Ultrassonografia Pré-Natal , Gravidez , Humanos , Feminino , Lactente , Primeiro Trimestre da Gravidez , Ultrassonografia Pré-Natal/métodos , Estudos Prospectivos , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA