Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Lasers Med Sci ; 39(1): 161, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907065

RESUMO

Electrosurgical and ultrasonic devices are used in surgical procedures for hemostatic sealing and bisection of vascular tissues. Previous benchtop studies alternatively demonstrated successful infrared laser sealing and cutting of blood vessels, in a sequential, two-step approach. This study describes a smaller, laparoscopic device compatible design, and simultaneous approach to sealing and bisection of vessels, with potential optical feedback. A 1470-nm infrared diode laser sealed and bisected 40 porcine renal arteries, ex vivo. A reciprocating, side-firing, optical fiber, housed in a transparent square quartz optical chamber (2.7 × 2.7 × 25 mm outer dimensions), delivered laser energy over an 11 mm scan length, with a range of incident powers (41-59 W) and treatment times (5-21 s). Vessel diameters ranged from 2.5 to 4.8 mm. Vessel burst pressure measurements were performed on each cut end (n = 80) with success indicated by pressures exceeding 360 mmHg. All vessel ends were successfully sealed and bisected (80/80). The highest incident power, 59 W, yielded short treatment times of 5-6 s. Peak temperatures on the external chamber surface reached 103 oC. Time to cool down to body temperature measured 37 s. Infrared lasers simultaneously seal and bisect blood vessels, with treatment times comparable to, and temperatures and cooling times lower than reported for conventional devices. Future work will focus on integrating the fiber and chamber into a standard 5-mm-outer-diameter laparoscopic device. Customization of fiber scan length to match vessel size may also reduce laser energy deposition, enabling lower peak temperatures, treatment times, and cooling times.


Assuntos
Lasers Semicondutores , Artéria Renal , Animais , Lasers Semicondutores/uso terapêutico , Suínos , Artéria Renal/cirurgia , Raios Infravermelhos , Hemostasia Cirúrgica/instrumentação , Hemostasia Cirúrgica/métodos , Terapia a Laser/instrumentação , Terapia a Laser/métodos , Laparoscopia/métodos , Laparoscopia/instrumentação
2.
Lasers Surg Med ; 55(10): 886-899, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38009367

RESUMO

INTRODUCTION: Infrared (IR) lasers are being tested as an alternative to radiofrequency (RF) and ultrasonic (US) surgical devices for hemostatic sealing of vascular tissues. In previous studies, a side-firing optical fiber with elliptical IR beam output was reciprocated, producing a linear IR laser beam pattern for uniform sealing of blood vessels. Technical challenges include limited field-of-view of vessel position within the metallic device jaws, and matching fiber scan length to variable vessel sizes. A transparent jaw may improve visibility and enable custom treatment. METHODS: Quartz and sapphire square optical chambers (2.7 × 2.7 × 25 [mm3 ] outer dimensions) were tested, capable of fitting into a 5-mm-OD laparoscopic device. A 1470 nm laser was used for optical transmission studies. Razor blade scans and an IR beam profiler acquired fiber (550-µm-core/0.22NA) output beam profiles. Thermocouples recorded peak temperatures and cooling times on internal and external chamber surfaces. Optical fibers with angle polished distal tips delivered 94% of light at a 90° angle. Porcine renal arteries with diameters of 3.4 ± 0.7 mm (n = 13) for quartz and 3.2 ± 0.7 mm (n = 14) for sapphire chambers (p > 0.05), were sealed using 30 W for 5 s. RESULTS: Reflection losses at material/air interfaces were 3.3% and 7.4% for quartz and sapphire. Peak temperatures on the external chamber surface averaged 74 ± 8°C and 73 ± 10°C (p > 0.05). Times to cool down to 37°C measured 13 ± 4 s and 27 ± 7 s (p < 0.05). Vessel burst pressures (BP) averaged 883 ± 393 mmHg and 412 ± 330 mmHg (p < 0.05). For quartz, 13/13 (100%) vessels were sealed (BP > 360 mmHg), versus 9/14 (64%) for sapphire. Computer simulations for the quartz chamber yielded peak temperatures (78°C) and cooling times (16 s) similar to experiments. CONCLUSIONS: Quartz is an inexpensive material for use in a laparoscopic device jaw, providing more consistent vessel seals and faster cooling times than sapphire and current RF and US devices.


Assuntos
Laparoscopia , Fibras Ópticas , Suínos , Animais , Quartzo , Óxido de Alumínio , Lasers
3.
IEEE J Sel Top Quantum Electron ; 29(4 Biophotonics)2023.
Artigo em Inglês | MEDLINE | ID: mdl-36466144

RESUMO

This study explores UV light induced fluorescence from blood vessels for indicating successful infrared laser sealing of vascular tissues. A light emitting diode (LED) with center wavelength of 340 nm and 0.1 mW power was used with a Y-shaped fiber bundle of seven 200-µm-core fibers. The central excitation fiber was connected to the LED, while the detection ring of six fibers was connected to a spectrometer. The fiber bundle was aligned with porcine renal arteries compressed between optical windows. Fluorescence was acquired before and after vessel sealing, with a 1470 nm laser for 5 s at 30 W (sealing, n = 10) or 5 W (control, n = 10). Signal increase in the 470-520 nm spectrum was correlated with vessel burst pressures (BP). Integrated fluorescence increased 71 ± 25% at 30 W vs. 19 ± 14% at 5 W (p < 0.05), corresponding to a successful BP of 639 ± 189 mmHg vs. failed seal BP of 39 ± 41 mmHg (p < 0.05). Real-time measurements showed a gradual increase in fluorescence with the signal reaching a plateau at 3-4 s, indicating that shorter seal times are possible. The increase in fluorescence signal during laser vessel sealing may provide a non-destructive, real-time, optical method for indicating hemostatic seals.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35949201

RESUMO

High-power infrared (IR) diode lasers are capable of sealing blood vessels during surgery. This study characterizes an optical feedback system for real-time, nondestructive identification of vessel seals. A low power, red aiming beam (635 nm) was used for diagnostics, co-aligned with a therapeutic high-power IR beam (1470 nm). The IR laser delivered either 30 W for 5 s for successful seals or 5 W for 5 s for unsuccessful seals (control). All studies used a linear beam measuring 8.4 × 2.0 mm. Optical signals for successful and failed seals were correlated with vessel burst pressures (BP) using destructive testing via a standard BP setup. Light scattering increased significantly as vessels were coagulated. Successful seals correlated with a percent decrease in optical transmission signal of 59 ± 11 % and seal failures to a transmission decrease of 23 ± 8% (p < 0.01). With further development, the real-time optical feedback system may be integrated into a laparoscopic device to de-activate the laser upon successful vessel sealing.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35950053

RESUMO

Infrared (IR) lasers have recently been tested as an alternative to electrosurgical and ultrasonic laparoscopic devices for optical sealing of blood vessels. IR laser technology previously demonstrated faster sealing times, reduced thermal spread, and lower device temperatures during experimental studies. However, current commercial laparoscopic devices incorporate electrical impedance and/or temperature sensors as real-time, closed-loop, feedback to indicate successful blood vessel seals. This preliminary study explores an infrared laser system for sealing and optical coherence tomography (OCT) as a potential feedback system for successful vessel seal verification. A 1470-nm diode laser delivered an incident power of 30 W for an irradiation time of 5 s using an 8 × 2 mm linear beam, for creating strong seals in porcine renal blood vessels under compression. After sealing the blood vessels, OCT was performed on unsealed and sealed vessel regions for comparison. Standard vessel burst pressure (BP) measurements confirmed successful seals after OCT. Integrated reflectance intensity in OCT A-scans decreased by an average of 20 ± 6% in sealed versus native vessels of 2.4 ± 0.4 mm diameter. Vessel BP measured 532 ± 239 mmHg, with all vessels (n = 25) recording a successful BP > 180 mmHg (hypertensive blood pressure). Unsealed vessels demonstrated significantly deeper imaging marked by a continuous decay in reflected intensity, while sealed vessels showed subsurface reflectance intensity peaks, immediately followed by a rapid decay in reflectance intensity. These markers are consistent with increased light scattering and decreased optical penetration depth upon thermal coagulation of tissues. A-line OCT data consistently differentiated between sealed and unsealed blood vessel regions. Future work will involve OCT integration into the laparoscopic device for real-time optical feedback during IR laser sealing.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35965612

RESUMO

Infrared lasers may provide faster and more precise sealing of blood vessels and with lower jaw temperatures than ultrasonic and electrosurgical devices. This study explores an oscillating or reciprocating side-firing optical fiber method for transformation of a circular laser beam into a linear beam, necessary for integration into a standard 5-mm-diameter laparoscopic device, and for uniform irradiation perpendicular to the vessel length. A servo motor connected to a side-firing, 550-µm-core fiber, provided linear translation of a 2.0-mm-diameter circular beam over either 5 mm or 11 mm scan lengths for sealing small or large vessels, respectively. Laser seals were performed, ex vivo, on a total of 20 porcine renal arteries of 1-6 mm diameter (n = 10 samples for each scan length). Each vessel was compressed to a fixed 0.4-mm-thickness, matching the 1470-nm laser optical penetration depth. Vessels were irradiated with fluences ranging from 636 J/cm2 to 716 J/cm2. A standard burst pressure (BP) setup was used to evaluate vessel seal strength. The reciprocating fiber produced mean BP of 554 ± 142 and 524 ± 132 mmHg, respectively, and consistently sealing blood vessels, with all BP above hypertensive (180 mmHg) blood pressures. The reciprocating fiber provides a relatively uniform linear beam profile and aspect ratio, but will require integration of servo motor into a handpiece.

7.
Lasers Surg Med ; 54(6): 875-882, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35391495

RESUMO

OBJECTIVES: High-power infrared lasers are capable of sealing blood vessels during surgery. A real-time diagnostic feedback system utilizing diffuse optical transmission is characterized by nondestructive identification of vessel seals. MATERIALS AND METHODS: For real-time diffuse optical transmission experiments, two approaches were studied. First, a low-power (1.2 mW) visible aiming beam (635 nm) was used for diagnostics, co-aligned with the therapeutic high-power infrared beam (1470 nm). Second, the 1470 nm beam was used simultaneously for both therapy and diagnostics. For both studies, the 1470-nm laser delivered 5 W for 5 seconds for unsuccessful seals (control) versus 30 W for 5 seconds for successful seals, using a linear beam profile (8.4 × 2 mm). Diffuse optical transmission signals were correlated with vessel burst pressures measured using a standard burst pressure setup. RESULTS: Diffuse optical transmission studies using the low-power, 635-nm aiming beam were promising. A decrease in the visible transmitted signal of 59 ± 11% was measured for successful seals versus 23 ± 8% for failed seals (p = 5.4E-8). The use of the high-power, 1470-nm infrared laser for simultaneous therapeutics and diagnostics proved inconsistent and unreliable, due in part to the dynamic and rapid changes in water content and absorption during the seal. CONCLUSIONS: A low-power, visible aiming beam, integrated with the therapeutic high-power infrared diode laser, may be used as a real-time diagnostic system for indicating successful laser seals, based on significant changes in optical scattering and diffuse optical transmission between native and coagulated compressed vessels. With further development, this simple and inexpensive optical feedback system may be integrated into a laparoscopic device for laser de-activation upon successful vessel sealing.


Assuntos
Laparoscopia , Lasers Semicondutores , Retroalimentação , Lasers Semicondutores/uso terapêutico
8.
Opt Eng ; 61(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36711441

RESUMO

Infrared lasers may provide faster and more precise sealing of blood vessels and with lower device jaw temperatures than ultrasonic and electrosurgical devices during surgery. Our study explores three beam shaping methods using optical fibers for transformation of a circular laser beam into a linear beam, necessary for integration into a standard 5-mm-diameter laparoscopic device, and for uniform irradiation perpendicular to the vessel length. In the first design, a servo motor connected to a side-firing, 550-µm-core fiber, provided linear translation of a 2.0-mm-diameter circular beam, back, and forth, over either 5 or 11 mm scan lengths for sealing of small or large vessels. The second design used external beam splitters to divide laser power equally into three side-firing fibers, stacked side-by-side, producing a linear beam of 4 × 2 mm. The third design used external beam splitters with three forward-firing fibers and a slanted jaw surface, to produce a linear beam of 5 × 1.5 mm. Laser seals were performed, ex vivo, on 41 porcine renal arteries of 1- to 6-mm diameter (n ≥ 10 samples for each design). Each vessel was compressed to a fixed 0.4-mm-thickness, matching the optical penetration depth at 1470 nm. Vessels were irradiated with fluences of 636 to 800 J/cm2, which, based on previous studies, is sufficient for sealing, but not cutting. A burst pressure setup was used to evaluate vessel seal strength. Reciprocating fiber and fiber bundles produced mean burst pressures of 554 ± 142, 524 ± 132, 429 ± 99, and 390 ± 140 mmHg, respectively. All designs consistently sealed blood vessels, with burst pressures above hypertensive (180 mmHg) blood pressures. The reciprocating fiber produced the most uniform linear beam profile and aspect ratio but will require integration of the servo motor into a handpiece. Fiber bundle designs produced shorter, less uniform beams, but enable optical components to be assembled outside the handpiece.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34305258

RESUMO

A 1470-nm laser previously demonstrated faster sealing and cutting of blood vessels with lower thermal spread than radiofrequency and ultrasonic surgical devices. This study simulates laser sealing and cutting of vessels in a sequential two-step process, for low (< 25 W), medium (~ 100 W), and high (200 W) power lasers. Optical transport, heat transfer, and tissue damage simulations were conducted. The blood vessel was assumed to be compressed to 400 µm thickness, matching previous experimental studies. A wide range of linear beam profiles (1-5 mm widths and 8-9.5 mm lengths), incident powers (20-200 W) and irradiation times (0.5-5.0 s), were simulated. Peak seal and cut temperatures and bifurcated thermal seal zones were also simulated and compared with experimental results for model validation. Optimal low power laser parameters were: 24W/5s/8×2mm for sealing and 24W/5s/8×1mm for cutting, yielding thermal spread of 0.4 mm and corresponding to experimental vessel burst pressures (BP) of ~450 mmHg. Optimal medium-power laser parameters were: 90 W/1s/9.5×3mm for sealing and 90W/1s/9.5×1mm for cutting, yielding thermal spread of 0.9 mm for BP of ~1300 mmHg. Optimal high-power laser parameters were: 200W/0.5s/9×3mm for sealing and 200W/0.5s/9×1mm for cutting, yielding thermal spread of 0.9 mm and extrapolated to have BP of ~1300 mmHg. All lasers produced seal zones between 0.4-1.5 mm, correlating to high BP of 300-1300 mmHg. Higher laser powers enable shorter sealing and cutting times and higher vessel seal strengths.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33746498

RESUMO

Blood vessel burst pressures were simulated and predicted for sealing and cutting of vessels in a two-step process, using low (<25 W), medium (~100 W), and high (200 W) power lasers at a wavelength of 1470 nm. Monte Carlo optical transport, heat transfer, Arrhenius integral tissue damage simulations, and vessel pressure equations were utilized. The purpose of these studies was to first validate the numerical model by comparison with experimental results (for low and medium power) and then to use the model to simulate parameters that could not be experimentally tested (for high power). The goal was to reduce the large range of parameters (power, irradiation time, and linear beam dimensions) to be tested in future experiments, for achieving short vessel sealing/cutting times, minimal bifurcated seal zones (BSZ), and high vessel burst pressures. Blood vessels were compressed to 400 µm thickness. A wide range of linear beam profiles (1-5 mm widths and 8-9.5 mm lengths), incident powers (20-200 W) and clinically relevant irradiation times (0.5-5.0 s) were simulated and peak seal and cut temperatures as well as thermal seal zones, ablation zones, and BSZ computed. A simplistic mathematical expression was used to estimate vessel burst pressures based on seal width. Optimal low-power parameters were: 24W/5s/8×2mm (sealing) and 24W/5s/8×1mm (cutting), yielding a BSZ of 0.4 mm, corresponding to experimental burst pressures of ~450 mmHg. Optimal medium-power parameters were: 90W/1s/9.5×3mm (sealing) and 90W/1s/9.5×1mm (cutting), yielding a BSZ of 0.9 mm for burst pressures of ~1300 mmHg. Simulated only optimal high-power parameters were: 200W/0.5s/9×3 mm (sealing) and 200W/0.5s/9×1mm (cutting), yielding a BSZ of 0.9 mm and extrapolated to predict a seal strength of ~1300 mmHg. All lasers produced seal zones between 0.4-1.5 mm, corresponding to high vessel burst pressures of 300-1300 mmHg (well above normal systolic blood pressure of 120 mmHg). Higher laser powers enable shorter sealing/cutting times and higher vessel strengths.

11.
J Biomed Opt ; 26(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33515219

RESUMO

SIGNIFICANCE: Water is a primary absorber of infrared (IR) laser energy, and urinary stones are immersed in fluid in the urinary tract and irrigated with saline during IR laser lithotripsy. Laser-induced vapor bubbles, formed during lithotripsy, contribute to the stone ablation mechanism and stone retropulsion effects. AIM: Introduction of a surfactant may enable manipulation of vapor bubble dimensions and duration, potentially for more efficient laser lithotripsy. APPROACH: A surfactant with concentrations of 0%, 5%, and 10% was tested. A single pulse from a thulium fiber laser with wavelength of 1940 nm was delivered to the surfactant through a 200-µm-core optical fiber, using a wide range of laser parameters, including energies of 0.05 to 0.5 J and pulse durations of 250 to 2500 µs. RESULTS: Bubble length, width, and duration with surfactant increased on average by 29%, 17%, and 120%, compared with water only. CONCLUSIONS: Our study demonstrated successful manipulation of laser-induced vapor bubble dimensions and duration using a biocompatible and commercially available surfactant. With further study, use of a surfactant may potentially improve the "popcorn" technique of laser lithotripsy within the confined space of the kidney, enable non-contact laser lithotripsy at longer working distances, and provide more efficient laser lithotripsy.


Assuntos
Lasers de Estado Sólido , Litotripsia a Laser , Litotripsia , Cálculos Urinários , Humanos , Tensoativos , Túlio , Cálculos Urinários/diagnóstico por imagem , Cálculos Urinários/terapia
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5045-5048, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019120

RESUMO

The Thulium fiber laser (TFL) is being explored as a potential alternative to the gold standard Holmium:YAG laser for infrared laser ablation of kidney stones. Laser-induced vapor bubbles contribute to both the ablation mechanism and stone retropulsion. In this preliminary study, a biocompatible surfactant with concentrations of 1-5% was used to enhance the vapor bubble dimensions during the laser pulse. Bubble dimensions using surfactant increased on average by 25% compared with water only (control). With further development, introduction of the surfactant into the saline irrigation flow typically delivered through the working channel of the ureteroscope during laser lithotripsy, may contribute to more efficient stone ablation.Clinical Relevance-This preliminary study demonstrates that the dimensions of laser-induced vapor bubbles created during infrared laser lithotripsy can be enhanced by up to 25%, for potential clinical translation into more efficient lithotripsy and use in the "popcorn" ablation method.


Assuntos
Lasers de Estado Sólido , Litotripsia a Laser , Surfactantes Pulmonares , Tensoativos , Túlio
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5049-5052, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019121

RESUMO

Suture ligation of vascular tissues is slow and skill intensive. Ultrasonic (US) and radiofrequency (RF) devices enable more rapid vascular tissue ligation to maintain hemostasis, than sutures and mechanical clips, which leave foreign objects in the body and require exchange of instruments. However, US and RF devices are limited by excessive collateral thermal damage to adjacent tissues, and high jaw temperatures that require a long time to cool. A novel alternative method using infrared (IR) laser energy is being developed for more rapid and precise sealing of vessels. This study describes design, modeling, and initial testing of several optical beam shaping geometries for integration into the standard jaws of a laparoscopic device. The objective was to transform the circular laser beam into a linear beam, for uniform, cross-irradiation and sealing of blood vessels. Cylindrical mirrors organized in a staircase geometry provided the best spatial beam profile.Clinical Relevance-This study explored several optical designs for potential integration into the standard jaws of a laparoscopic vessel sealing device, transforming a circular laser beam into a linear beam for sealing of vascular structures.


Assuntos
Laparoscopia , Lasers , Ligadura , Instrumentos Cirúrgicos , Suturas
14.
Artigo em Inglês | MEDLINE | ID: mdl-34337611

RESUMO

Infrared lasers may provide faster sealing of vascular tissues with less collateral thermal damage and lower device temperatures than radiofrequency and ultrasonic devices currently used for surgery. Optical coherence tomography is tested to image native and thermally coagulated blood vessels, as a potential feedback system.

15.
J Biomed Opt ; 24(3): 1-10, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30915783

RESUMO

Our preliminary study investigates an automated, vibrating fiber optic tip for dusting of kidney stones during thulium fiber laser (TFL) lithotripsy. A (0.75-mm diameter and 5-mm length) magnetic bead was attached to the fiber jacket, centered 2 cm from distal fiber tip. A solenoid was placed parallel to the fiber with a 0.5-mm gap between solenoid and magnetic bead on fiber. The solenoid was used to create a magnetic force on the bead, inducing fiber vibration. Calibration tests for fiber motion in both air and water were performed. The ablation crater characteristics (surface area, volume, depth, and major/minor axis) of uric acid stones were measured using optical coherence tomography, after delivery of 1500 TFL pulses at 1908 nm, 33 mJ, 500 µs, and up to 300 Hz, through 50-, 100-, and 150-µm-core fibers. The resonant frequency was dependent on fiber diameter and rigidity, with a cutoff pivot point for optimum vibration amplitude at 4 cm. Maximum fiber displacement is about 1 mm in water and 4 mm in air. For 50-, 100-, and 150-µm-core fibers, ablated surface area averaged 1.7, 1.7, and 2.8 times greater with vibrating fiber than fixed fiber, respectively. For these fibers, ablation volume averaged 1.1, 1.5, and 1.1 times greater with vibrating fiber than fixed fiber, given a fixed energy per pulse, respectively. Our preliminary study demonstrates the functionality of an automated, vibrating fiber system for stone "dusting," with significantly larger surface area but similar ablation volumes as a fixed fiber. Future studies will focus on optimization of fiber parameters (especially displacement) and miniaturization of system components to facilitate integration into ureteroscopes.


Assuntos
Cálculos Renais/cirurgia , Litotripsia a Laser/instrumentação , Litotripsia a Laser/métodos , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Modelos Biológicos , Túlio , Vibração
16.
Lasers Surg Med ; 51(6): 522-530, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30648761

RESUMO

OBJECTIVES: The experimental Thulium fiber laser (TFL) is currently being studied as a potential alternative to the gold standard Holmium:YAG laser for lithotripsy. Recent advances in both Holmium and TFL technology allow operation at similar laser parameters for direct comparison. The use of a "dusting" mode with low pulse energy (0.2-0.4 J) and high pulse rate (50-80 Hz) settings, is gaining popularity in lithotripsy due to the desire to produce smaller residual stone fragments during ablation, capable of being spontaneously passed through the urinary tract. METHODS: In this study, Holmium and TFL were directly compared for 'dusting' using three laser groups, G1: 0.2 J/50 Hz/10 W; G2: 0.2 J/80 Hz/16 W; and G3: 0.4 J/80 Hz/32 W. Holmium laser pulse durations ranged from 200 to 350 µs, while TFL pulse durations ranged from 500 to 1,000 µs, due to technical limitations for both laser systems. An experimental setup consisting of 1 × 1 cm cuvette with 1 mm sieve was used with continuous laser operation time limited to ≤5 minutes. Calcium oxalate monohydrate stone samples with a sample size of n = 5 were used for each group, with average initial stone mass ranging from 216 to 297 mg among groups. RESULTS: Holmium laser ablation rates were lower than for TFL at all three settings (G1: 0.3 ± 0.2 vs. 0.8 ± 0.2; G2: 0.6 ± 0.1 vs. 1.0 ± 0.4; G3: 0.7 ± 0.2 vs. 1.3 ± 0.9 mg/s). The TFL also produced a greater percentage by mass of stone dust (fragments <0.5 mm) than Holmium laser. For all three settings combined, one out of 15 (7%) stones treated with Holmium laser were completely fragmented in ≤5 minutes compared to nine out of 15 (60%) stones treated with TFL. CONCLUSIONS: These preliminary studies demonstrate that the TFL is a promising alternative laser for lithotripsy when operated in dusting mode, producing higher stone ablation rates and smaller stone fragments than the Holmium laser. Clinical studies are warranted. Lasers Surg. Med. 51:522-530, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Cálculos Renais/terapia , Lasers de Estado Sólido/uso terapêutico , Litotripsia a Laser , Oxalato de Cálcio , Humanos , Modelos Biológicos , Túlio
17.
Artigo em Inglês | MEDLINE | ID: mdl-30034078

RESUMO

Previous studies have shown that reflectance imaging at wavelengths greater than 1200-nm can be used to image demineralization on tooth occlusal surfaces with high contrast and without the interference of stains. In addition, these near-IR imaging systems can be integrated with laser ablation systems for the selective removal of carious lesions. Higher wavelengths, such as 1950-nm, yield higher lesion contrast due to higher water absorption and lower scattering. In this study, a point-to-point scanning system employing diode and fiber lasers operating at 1450, 1860, 1880, and 1950-nm was used to acquire reflected light images of the tooth surface. Artificial lesions were imaged at these wavelengths to determine the highest lesion contrast. Near-IR images at 1880-nm were used to demarcate lesion areas for subsequent selective carious lesion removal using a new compact air-cooled CO2 laser prototype operating at 9.3-µm. The highest lesion contrast was at 1950-nm and the dual NIR/CO2 laser system selectively removed the simulated lesions with a mean loss of only 12-µm of sound enamel.

18.
Nat Rev Urol ; 15(9): 563-573, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29884804

RESUMO

The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.


Assuntos
Desenho de Equipamento/tendências , Tecnologia de Fibra Óptica/tendências , Lasers de Estado Sólido/uso terapêutico , Litotripsia a Laser/instrumentação , Cálculos Urinários/terapia , Humanos , Litotripsia a Laser/métodos , Litotripsia a Laser/tendências , Avaliação de Resultados em Cuidados de Saúde , Ureteroscópios
19.
Artigo em Inglês | MEDLINE | ID: mdl-30774176

RESUMO

A nonsurgical laser procedure is being developed for treatment of female stress urinary incontinence (SUI). Previous studies in porcine vaginal tissues, ex vivo, as well as computer simulations, showed the feasibility of using near-infrared laser energy delivered through a transvaginal contact cooling probe to thermally remodel endopelvic fascia, while preserving the vaginal wall from thermal damage. This study explores optical properties of vaginal tissue in cadavers as an intermediate step towards future pre-clinical and clinical studies. Optical clearing of tissue using glycerol resulted in a 15-17% increase in optical transmission after 11 min at room temperature (and a calculated 32.5% increase at body temperature). Subsurface thermal lesions were created using power of 4.6 - 6.4 W, 5.2-mm spot, and 30 s irradiation time, resulting in partial preservation of vaginal wall to 0.8 - 1.1 mm depth.

20.
J Miss Acad Sci ; 63(2 Suppl 1): 202-205, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30814766

RESUMO

Over 6.5 million women in the United States suffer from female stress urinary incontinence (SUI). Only ~200,000 women choose surgery. There may be a role for a non-surgical, minimally invasive procedure that provides thermal shrinkage/remodeling of submucosal collagen in the endopelvic fascia. This study describes design, characterization, and preliminary testing of a novel probe with integrated contact cooling for potential use in transvaginal laser treatment of SUI. Laser energy at a deeply penetrating, near-infrared wavelength of 1075 nm was delivered through a 600-µm-core fiber optic patchcord into a 90° side-firing probe head (19 × 22 mm) with integrated flow cell and sapphire window cooled to -2°C by circulating an alcohol-based solution. An inflatable balloon attached to the probe insured contact with vaginal wall. A force sensor and thermocouples monitored pressure and temperature. Thermal lesions were created in vaginal tissue of three cadavers (power = 4.6-6.4 W; spot diameter = 5.2 mm; time = 30 s). Thermal lesion areas measured 3.1-4.6 mm2, while preserving the vaginal wall to a depth of 0.8-1.1 mm. Consistent tissue contact and cooling was maintained using the force sensors. Preliminary cadaver studies demonstrated subsurface treatment of endopelvic fascia with partial preservation of the vaginal wall. Future studies will optimize parameters for thermal remodeling with further tissue surface preservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA