RESUMO
Store-operated Ca2+ entry (SOCE) mediated by stromal interacting molecule (STIM)-gated ORAI channels at endoplasmic reticulum (ER) and plasma membrane (PM) contact sites maintains adequate levels of Ca2+ within the ER lumen during Ca2+ signaling. Disruption of ER Ca2+ homeostasis activates the unfolded protein response (UPR) to restore proteostasis. Here, we report that the UPR transducer inositol-requiring enzyme 1 (IRE1) interacts with STIM1, promotes ER-PM contact sites, and enhances SOCE. IRE1 deficiency reduces T cell activation and human myoblast differentiation. In turn, STIM1 deficiency reduces IRE1 signaling after store depletion. Using a CaMPARI2-based Ca2+ genome-wide screen, we identify CAMKG2 and slc105a as SOCE enhancers during ER stress. Our findings unveil a direct crosstalk between SOCE and UPR via IRE1, acting as key regulator of ER Ca2+ and proteostasis in T cells and muscles. Under ER stress, this IRE1-STIM1 axis boosts SOCE to preserve immune cell functions, a pathway that could be targeted for cancer immunotherapy.
Assuntos
Sinalização do Cálcio , Cálcio , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Membrana Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Molécula 1 de Interação Estromal/metabolismoRESUMO
AIMS: No effective therapy is available in clinics to protect the heart from ischaemia/reperfusion (I/R) injury. Endothelial cells are activated after I/R, which may drive the inflammatory response by releasing ATP through pannexin1 (Panx1) channels. Here, we investigated the role of Panx1 in cardiac I/R. METHODS AND RESULTS: Panx1 was found in cardiac endothelial cells, neutrophils, and cardiomyocytes. After in vivo I/R, serum Troponin-I, and infarct size were less pronounced in Panx1-/- mice, but leukocyte infiltration in the infarct area was similar between Panx1-/- and wild-type mice. Serum Troponin-I and infarct size were not different between mice with neutrophil-specific deletion of Panx1 and Panx1fl/fl mice, suggesting that cardioprotection by Panx1 deletion rather involved cardiomyocytes than the inflammatory response. Physiological cardiac function in wild-type and Panx1-/- hearts was similar. The time to onset of contracture and time to maximal contracture were delayed in Panx1-/- hearts, suggesting reduced sensitivity of these hearts to ischaemic injury. Moreover, Panx1-/- hearts showed better recovery of left ventricle developed pressure, cardiac contractility, and relaxation after I/R. Ischaemic preconditioning failed to confer further protection in Panx1-/- hearts. Panx1 was found in subsarcolemmal mitochondria (SSM). SSM in WT or Panx1-/- hearts showed no differences in morphology. The function of the mitochondrial permeability transition pore and production of reactive oxygen species in SSM was not affected, but mitochondrial respiration was reduced in Panx1-/- SSM. Finally, Panx1-/- cardiomyocytes had a decreased mitochondrial membrane potential and an increased mitochondrial ATP content. CONCLUSION: Panx1-/- mice display decreased sensitivity to cardiac I/R injury, resulting in smaller infarcts and improved recovery of left ventricular function. This cardioprotective effect of Panx1 deletion seems to involve cardiac mitochondria rather than a reduced inflammatory response. Thus, Panx1 may represent a new target for controlling cardiac reperfusion damage.
Assuntos
Contratura , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Células Endoteliais , Troponina I , Miócitos Cardíacos , Mitocôndrias Cardíacas , Trifosfato de Adenosina , Infarto , Proteínas do Tecido Nervoso/genética , Conexinas/genéticaRESUMO
Skeletal muscles are a highly structured tissue responsible for movement and metabolic regulation, which can be broadly subdivided into fast and slow twitch muscles with each type expressing common as well as specific sets of proteins. Congenital myopathies are a group of muscle diseases leading to a weak muscle phenotype caused by mutations in a number of genes including RYR1. Patients carrying recessive RYR1 mutations usually present from birth and are generally more severely affected, showing preferential involvement of fast twitch muscles as well as extraocular and facial muscles. In order to gain more insight into the pathophysiology of recessive RYR1-congential myopathies, we performed relative and absolute quantitative proteomic analysis of skeletal muscles from wild-type and transgenic mice carrying p.Q1970fsX16 and p.A4329D RyR1 mutations which were identified in a child with a severe congenital myopathy. Our in-depth proteomic analysis shows that recessive RYR1 mutations not only decrease the content of RyR1 protein in muscle, but change the expression of 1130, 753, and 967 proteins EDL, soleus and extraocular muscles, respectively. Specifically, recessive RYR1 mutations affect the expression level of proteins involved in calcium signaling, extracellular matrix, metabolism and ER protein quality control. This study also reveals the stoichiometry of major proteins involved in excitation contraction coupling and identifies novel potential pharmacological targets to treat RyR1-related congenital myopathies.
Assuntos
Doenças Musculares , Canal de Liberação de Cálcio do Receptor de Rianodina , Camundongos , Animais , Camundongos Transgênicos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteômica , Músculo Esquelético/metabolismo , Doenças Musculares/genética , MutaçãoRESUMO
Tubular aggregate myopathy (TAM) is a progressive skeletal muscle disease associated with gain-of-function mutations in the ER Ca2+ sensor STIM1 that mediates store-operated Ca2+ entry (SOCE) across the Ca2+-release-activated (CRAC) Ca2+ channel ORAI1. A frameshift mutation in STIM1 inactivation domain, STIM1I484R, was identified in a TAM patient and reported to decrease SOCE. Using ion imaging and electrophysiology, we show that the STIM1I484R mutation instead renders STIM1 constitutively active. In ion imaging experiments, STIM1I484R was less efficient than native STIM1 when expressed alone but enhanced SOCE and increased basal Ca2+ and Mn2+ influx when expressed together with ORAI1. In patch-clamp recordings, STIM1I484R generated larger pre-activated CRAC currents lacking slow Ca2+-dependent inhibition (SCDI). STIM1I484R was pre-recruited in plasma membrane clusters when co-expressed with ORAI1, as were mutants truncated at the frameshift residue or lacking EB-1-binding, which recapitulated STIM1I484R gain-of-function. When expressed alone in human primary myoblasts, STIM1I484R was pre-recruited in large clusters and increased basal Ca2+ entry. These observations establish that STIM1I484R confers a gain of CRAC channel function due to the loss of critical inhibitory C-terminal domains that prevent STIM1 binding to ORAI1, enable STIM1 trapping by microtubules, and mediate SCDI, providing a mechanistic explanation for the muscular defects of TAM patients bearing this mutation.
Assuntos
Canais de Cálcio , Miopatias Congênitas Estruturais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Mutação/genética , Miopatias Congênitas Estruturais/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismoRESUMO
Muscle regeneration is essential for proper muscle homeostasis and relies primarily on muscle stem cells (MuSC). MuSC are maintained quiescent in their niche and can be activated following muscle injury. Using an in vitro model of primary human quiescent MuSC (called reserve cells, RC), we analyzed their Ca2+ response following their activation by fetal calf serum and assessed the role of Ca2+ in the processes of RC activation and migration. The results showed that RC displayed a high response heterogeneity in a cell-dependent manner following serum stimulation. Most of these responses relied on inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ release associated with Ca2+ influx, partly due to store-operated calcium entry. Our study further found that blocking the IP3 production, Ca2+ influx, or both did not prevent the activation of RC. Intra- or extracellular Ca2+ chelation did not impede RC activation. However, their migration potential depended on Ca2+ responses displayed upon stimulation, and Ca2+ blockers inhibited their movement. We conclude that the two major steps of muscle regeneration, namely the activation and migration of MuSC, differently rely on Ca2+ signals.
Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Humanos , Transporte de Íons , Fibras Musculares Esqueléticas/metabolismo , Células-Tronco/metabolismoRESUMO
Nifedipine, an L-type voltage-gated Ca2+ channel (L-VGCC) blocker, is one of the most used tocolytics to treat preterm labor. In clinical practice, nifedipine efficiently decreases uterine contractions, but its efficacy is limited over time, and repeated or maintained nifedipine-based tocolysis appears to be ineffective in preventing preterm birth. We aimed to understand why nifedipine has short-lasting efficiency for the inhibition of uterine contractions. We used ex vivo term pregnant human myometrial strips treated with cumulative doses of nifedipine. We observed that nifedipine inhibited spontaneous myometrial contractions in tissues with high and regular spontaneous contractions. By contrast, nifedipine appeared to increase contractions in tissues with low and/or irregular spontaneous contractions. To investigate the molecular mechanisms activated by nifedipine in myometrial cells, we used the pregnant human myometrial cell line PHM1-41 that does not express L-VGCC. The in vitro measurement of intracellular Ca2+ showed that high doses of nifedipine induced an important intracellular Ca2+ entry in myometrial cells. The inhibition or downregulation of the genes encoding for store-operated Ca2+ entry channels from the Orai and transient receptor potential-canonical (TRPC) families in PHM1-41 cells highlighted the implication of TRPC1 in nifedipine-induced Ca2+ entry. In addition, the use of 2-APB in combination with nifedipine on human myometrial strips tends to confirm that the pro-contractile effect induced by nifedipine on myometrial tissues may involve the activation of TRPC channels.
Assuntos
Contração Muscular , Miométrio , Nifedipino , Canais de Cátion TRPC , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular , Feminino , Humanos , Contração Muscular/efeitos dos fármacos , Miométrio/efeitos dos fármacos , Nifedipino/farmacologia , Gravidez , Nascimento Prematuro/metabolismo , Nascimento Prematuro/prevenção & controle , Canais de Cátion TRPC/metabolismo , Contração UterinaRESUMO
Efficient immune responses require Ca2+ fluxes across ORAI1 channels during engagement of T cell receptors (TCR) at the immune synapse (IS) between T cells and antigen presenting cells. Here, we show that ZDHHC20-mediated S-acylation of the ORAI1 channel at residue Cys143 promotes TCR recruitment and signaling at the IS. Cys143 mutations reduced ORAI1 currents and store-operated Ca2+ entry in HEK-293 cells and nearly abrogated long-lasting Ca2+ elevations, NFATC1 translocation, and IL-2 secretion evoked by TCR engagement in Jurkat T cells. The acylation-deficient channel remained in cholesterol-poor domains upon enforced ZDHHC20 expression and was recruited less efficiently to the IS along with actin and TCR. Our results establish S-acylation as a critical regulator of ORAI1 channel trafficking and function at the IS and reveal that ORAI1 S-acylation enhances TCR recruitment to the synapse.
Assuntos
Aciltransferases/genética , Cálcio/metabolismo , Proteína ORAI1/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Acilação , Aciltransferases/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Células HEK293 , Humanos , Células Jurkat/metabolismo , Microdomínios da Membrana/metabolismo , Proteína ORAI1/metabolismo , Enxofre/metabolismo , Linfócitos T/metabolismoRESUMO
Current knowledge on store-operated Ca2+ entry (SOCE) regarding its localization, kinetics, and regulation is mostly derived from studies performed in non-excitable cells. After a long time of relative disinterest in skeletal muscle SOCE, this mechanism is now recognized as an essential contributor to muscle physiology, as highlighted by the muscle pathologies that are associated with mutations in the SOCE molecules STIM1 and Orai1. This review mainly focuses on the peculiar aspects of skeletal muscle SOCE that differentiate it from its counterpart found in non-excitable cells. This includes questions about SOCE localization and the movement of respective proteins in the highly organized skeletal muscle fibers, as well as the diversity of expressed STIM isoforms and their differential expression between muscle fiber types. The emerging evidence of a phasic SOCE, which is activated during EC coupling, and its physiological implication is described as well. The specific issues related to the use of SOCE modulators in skeletal muscles are discussed. This review highlights the complexity of SOCE activation and its regulation in skeletal muscle, with an emphasis on the most recent findings and the aim to reach a current picture of this mesmerizing phenomenon.
Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Animais , Humanos , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismoRESUMO
BACKGROUND: In vitro maturation of human primary myoblasts using 2D culture remains a challenging process and leads to immature fibers with poor internal organization and function. This would however represent a valuable system to study muscle physiology or pathophysiology from patient myoblasts, at a single-cell level. METHODS: Human primary myoblasts were cultured on 800-nm wide striated surface between two layers of Matrigel, and in a media supplemented with an inhibitor of TGFß receptor. Gene expression, immunofluorescence, and Ca2+ measurements upon electrical stimulations were performed at various time points during maturation to assess the organization and function of the myotubes. RESULTS: We show that after 10 days in culture, myotubes display numerous functional acetylcholine receptor clusters and express the adult isoforms of myosin heavy chain and dihydropyridine receptor. In addition, the myotubes are internally well organized with striations of α-actinin and STIM1, and occasionally ryanodine receptor 1. We also demonstrate that the myotubes present robust Ca2+ responses to repetitive electrical stimulations. CONCLUSION: The present method describes a fast and efficient system to obtain well matured and functional myotubes in 2D culture allowing thorough analysis of single-cell Ca2+ signals.
Assuntos
Fibras Musculares Esqueléticas , Mioblastos , Actinina , Diferenciação Celular , Células Cultivadas , Humanos , Cadeias Pesadas de Miosina/genéticaRESUMO
Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.
Assuntos
Sinalização do Cálcio , Proteínas de Neoplasias , Pancreatite Crônica , Molécula 1 de Interação Estromal , Cálcio/metabolismo , Sinalização do Cálcio/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismoRESUMO
During myogenesis, a long splice variant of STIM1, called STIM1L is getting expressed, while the level of STIM1 remains constant. Previous work demonstrated that STIM1L is more efficient in eliciting store-operated Ca2+ entry (SOCE), but no current analysis of the channel(s) activated by this new STIM1L isoform was performed until now. In this study, we investigate the ionic channel(s) activated by STIM1L and whether differences exist between the two STIM1 isoforms, using HEK-293 T cells as a model system. Our data show that STIM1 and STIM1L activate Orai1 channel but also the endogenously expressed TRPC1. The channel activation occurs in two steps, with first Orai1 activation followed, in a subset of cells, by TRPC1 opening. Remarkably, STIM1L more frequently activates TRPC1 and preferentially interacts with TRPC1. In low intracellular Ca2+ buffering condition, the frequency of TRPC1 opening increases significantly, strongly suggesting a Ca2+-dependent channel activation. The ability of STIM1L to open Orai1 appears decreased compared to STIM1, which might be explained by its stronger propensity towards TRPC1. Indeed, increasing the amount of STIM1L results in an enhanced Orai1 current. The role of endogenous TRPC1 in STIM1- and STIM1L-induced SOCE was confirmed by Ca2+ imaging experiments. Overall, our findings provide a detailed analysis of the channels activated by both STIM1 isoforms, revealing that STIM1L is more prone to open TRPC1, which might explain the larger SOCE elicited by this isoform.
Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Ativação do Canal Iônico , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Canais de Cátion TRPC/metabolismo , Processamento Alternativo/genética , Ácido Egtázico/análogos & derivados , Ácido Egtázico/metabolismo , Células HEK293 , Humanos , Ligação ProteicaRESUMO
Transient receptor potential canonical (TRPC) channels belong to the large family of TRPs that are mostly nonselective cation channels with a great variety of gating mechanisms. TRPC are composed of seven members that can all be activated downstream of agonist-induced phospholipase C stimulation, but some members are also stretch-activated and/or are part of the store-operated Ca2+ entry (SOCE) pathway. Skeletal muscles generate contraction via an explosive increase of cytosolic Ca2+ concentration resulting almost exclusively from sarcoplasmic reticulum Ca2+ channel opening. Even if neglected for a long time, it is now commonly accepted that Ca2+ entry via SOCE and other routes is essential to sustain contractions of the skeletal muscle. In addition, Ca2+ influx is required during muscle regeneration, and alteration of the influx is associated with myopathies. In this chapter, we review the implication of TRPC channels at different stages of muscle regeneration, in adult muscle fibers, and discuss their implication in myopathies.
Assuntos
Transtornos Motores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Doenças do Sistema Nervoso/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Humanos , Retículo Sarcoplasmático/metabolismoRESUMO
Satellite cells (SC) are muscle stem cells located between the plasma membrane of muscle fibers and the surrounding basal lamina. They are essential for muscle regeneration. Upon injury, which occurs frequently in skeletal muscles, SCs are activated. They proliferate as myoblasts and differentiate to repair muscle lesions. Among many events that take place during muscle differentiation, cytosolic Ca2+ signals are of great importance. These Ca2+ signals arise from Ca2+ release from internal Ca2+ stores, as well as from Ca2+ entry from the extracellular space, particularly the store-operated Ca2+ entry (SOCE). This paper describes a methodology used to obtain a pure population of human myoblasts from muscle samples collected after orthopedic surgery. The tissue is mechanically and enzymatically digested, and the cells are amplified and then sorted by flow cytometry according to the presence of specific membrane markers. Once obtained, human myoblasts are expanded and committed to differentiate by removing growth factors from the culture medium. The expression levels of specific transcription factors and in vitro immunofluorescence are used to assess the myogenic differentiation process in control conditions and after silencing proteins involved in Ca2+ signaling. Finally, we detail the use of Fura-2 as a ratiometric Ca2+ probe that provides reliable and reproducible measurements of SOCE.
Assuntos
Sinalização do Cálcio/fisiologia , Separação Celular/métodos , Músculo Esquelético/citologia , Mioblastos/citologia , Mioblastos/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Cálcio/análise , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Citometria de Fluxo , Imunofluorescência/métodos , Corantes Fluorescentes/metabolismo , Fura-2/metabolismo , Humanos , Imagem Molecular/métodos , Desenvolvimento Muscular/fisiologia , Fatores de Transcrição/metabolismo , Transfecção/métodosRESUMO
Ca2+ signaling plays a key role during human myoblast differentiation. Among Ca2+-sensitive pathways, calcineurin is essential for myoblast differentiation and muscle regeneration. Nuclear factor of activated T-cell (NFAT) transcription factors are the major calcineurin targets. We investigated the expression and the role of each NFAT gene during human primary myoblast differentiation. We found that three NFAT isoforms are present, NFATc1, NFATc3 and NFATc4. Importantly, while their mRNA expression increases during differentiation, NFATc1 is more highly expressed in myotubes, whilst NFATc4 is specifically maintained in reserve cells. NFATc3 is present in both cell types, although no specific role during myoblast differentiation was observed. Knockdown of either NFATc1 or NFATc4 affects the differentiation process similarly, by decreasing the expression of late differentiation markers, but impairs myotube formation differently. Whereas NFATc1 knockdown strongly reduced the number and the surface area of myotubes, NFATc4 knockdown increased the surface area of myotubes and reduced the pool of reserve cells. We conclude that NFAT genes have specific roles in myotube formation and in the maintenance of the reserve cell pool during human postnatal myogenesis.
Assuntos
Diferenciação Celular , Mioblastos/citologia , Mioblastos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/genética , Sobrevivência Celular , Células Cultivadas , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fatores de Transcrição NFATC/genética , Fator de Transcrição PAX7/metabolismo , Fenótipo , RNA Interferente Pequeno/metabolismoRESUMO
STIM1 and Orai1 are essential players of store-operated Ca2+ entry (SOCE) in human skeletal muscle cells and are required for adult muscle differentiation. Besides these two proteins, TRPC (transient receptor potential canonical) channels and STIM1L (a longer STIM1 isoform) are also present on muscle cells. In the present study, we assessed the role of TRPC1, TRPC4 and STIM1L in SOCE, in the maintenance of repetitive Ca2+ transients and in muscle differentiation. Knockdown of TRPC1 and TRPC4 reduced SOCE by about 50% and significantly delayed the onset of Ca2+ entry, both effects similar to STIM1L invalidation. Upon store depletion, TRPC1 and TRPC4 appeared to interact preferentially with STIM1L compared to STIM1. STIM1L invalidation affected myoblast differentiation, with the formation of smaller myotubes, an effect similar to what we reported for TRPC1 and TRPC4 knockdown. On the contrary, the overexpression of STIM1L leads to the formation of larger myotubes. All together, these data strongly suggest that STIM1L and TRPC1/4 are working together in myotubes to ensure efficient store refilling and a proper differentiation program.
Assuntos
Sinalização do Cálcio , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Pré-Escolar , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Proteínas de Neoplasias/química , Ligação Proteica , Isoformas de Proteínas/metabolismo , Molécula 1 de Interação Estromal/químicaRESUMO
Cystic Fibrosis (CF) is the most frequent fatal genetic disease in Caucasian populations. Mutations in the chloride channel CF Transmembrane Conductance Regulator (CFTR) gene are responsible for functional defects of the protein and multiple associated dysregulations. The most common mutation in patients with CF, F508del-CFTR, causes defective CFTR protein folding. Thus minimal levels of the receptor are expressed at the cell surface as the mutated CFTR is retained in the endoplasmic reticulum (ER) where it correlates with defective calcium (Ca2+) homeostasis. In this study, we discovered that the Ca2+ binding protein Calumenin (CALU) is a key regulator in the maintenance of ER-Ca2+ calcium homeostasis in both wild type and F508del-CFTR expressing cells. Calumenin modulates SERCA pump activity without drastically affecting ER-Ca2+ concentration. In addition, reducing Calumenin expression in CF cells results in a partial restoration of CFTR activity, highlighting a potential function of Calumenin in CFTR maturation. These findings demonstrate a pivotal role for Calumenin in CF cells, providing insights into how modulation of Calumenin expression or activity may be used as a potential therapeutic tool to correct defects in F508del-CFTR.
Assuntos
Brônquios/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Homeostase , Brônquios/patologia , Células Cultivadas , HumanosRESUMO
STIM proteins populate and expand cortical endoplasmic reticulum (ER) sheets to mediate store-operated Ca(2+) entry (SOCE) by trapping and gating Orai channels in ER-plasma membrane clusters. A longer splice variant, STIM1L, forms permanent ER-plasma membrane clusters and mediates rapid Ca(2+) influx in muscle. Here, we used electron microscopy, total internal reflection fluorescence (TIRF) microscopy and Ca(2+) imaging to establish the trafficking and signaling properties of the two STIM1 isoforms in Stim1(-/-)/Stim2(-/-) fibroblasts. Unlike STIM1, STIM1L was poorly recruited into ER-plasma membrane clusters and did not mediate store-dependent expansion of cortical ER cisternae. Removal of the STIM1 lysine-rich tail prevented store-dependent cluster enlargement, whereas inhibition of cytosolic Ca(2+) elevations or removal of the STIM1L actin-binding domain had no impact on cluster expansion. Finally, STIM1L restored robust but not accelerated SOCE and clustered with Orai1 channels more slowly than STIM1 following store depletion. These results indicate that STIM1L does not mediate rapid SOCE but can trap and gate Orai1 channels efficiently without remodeling cortical ER cisternae. The ability of STIM proteins to induce cortical ER formation is dispensable for SOCE and requires the lysine-rich tail of STIM1 involved in binding to phosphoinositides.
Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Técnicas de Cultura de Células , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Proteína ORAI1 , Fosfatidilinositóis/metabolismo , Transporte Proteico , Molécula 1 de Interação EstromalRESUMO
Cystic Fibrosis (CF) disease is caused by mutations in the CFTR gene (CF transmembrane conductance regulator). F508 deletion is the most represented mutation, and F508del-CFTR is absent of plasma membrane and accumulates into the endoplasmic reticulum (ER) compartment. Using specific Ca2+ genetics cameleon probes, we showed in the human bronchial CF epithelial cell line CFBE that ER Ca2+ concentration was strongly increased compared to non-CF (16HBE) cells, and normalized by the F508del-CFTR corrector agent, VX-809. We also showed that ER F508del-CFTR retention increases SERCA (Sarcoplasmic/Reticulum Ca2+ ATPase) pump activity whereas PMCA (Plasma Membrane Ca2+ ATPase) activities were reduced in these CF cells compared to corrected CF cells (VX-809) and non-CF cells. We are showing for the first time CFTR/SERCA and CFTR/PMCA interactions that are modulated in CF cells and could explain part of Ca2+ homeostasis deregulation due to mislocalization of F508del-CFTR. Using ER or mitochondria genetics Ca2+ probes, we are showing that ER Ca2+ content, mitochondrial Ca2+ uptake, SERCA and PMCA pump, activities are strongly affected by the localization of F508del-CFTR protein.
Assuntos
Cálcio/metabolismo , Fibrose Cística/patologia , Células Epiteliais/enzimologia , Homeostase , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trifosfato de Adenosina/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Brônquios/patologia , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Homeostase/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ligação Proteica/efeitos dos fármacosRESUMO
Cell-to-cell communication via gap junctions regulates airway epithelial cell homeostasis and maintains the epithelium host defense. Quorum-sensing molecules produced by Pseudomonas aeruginosa coordinate the expression of virulence factors by this respiratory pathogen. These bacterial signals may also incidentally modulate mammalian airway epithelial cell responses to the pathogen, a process called interkingdom signaling. We investigated the interactions between the P. aeruginosa N-3-oxo-dodecanoyl-L-homoserine lactone (C12) quorum-sensing molecule and human airway epithelial cell gap junctional intercellular communication (GJIC). C12 degradation and its effects on cells were monitored in various airway epithelial cell models grown under nonpolarized and polarized conditions. Its concentration was further monitored in daily tracheal aspirates of colonized intubated patients. C12 rapidly altered epithelial integrity and decreased GJIC in nonpolarized airway epithelial cells, whereas other quorum-sensing molecules had no effect. The effects of C12 were dependent on [Ca(2+)]i and could be prevented by inhibitors of Src tyrosine family and Rho-associated protein kinases. In contrast, polarized airway cells grown on Transwell filters were protected from C12 except when undergoing repair after wounding. In vivo during colonization of intubated patients, C12 did not accumulate, but it paralleled bacterial densities. In vitro C12 degradation, a reaction catalyzed by intracellular paraoxonase 2 (PON2), was impaired in nonpolarized cells, whereas PON2 expression was increased during epithelial polarization. The cytotoxicity of C12 on nonpolarized epithelial cells, combined with its impaired degradation allowing its accumulation, provides an additional pathogenic mechanism for P. aeruginosa infections.
Assuntos
Células Epiteliais/fisiologia , Homosserina/análogos & derivados , Pseudomonas aeruginosa/fisiologia , Arildialquilfosfatase/metabolismo , Sinalização do Cálcio , Comunicação Celular , Linhagem Celular , Junções Comunicantes/fisiologia , Homosserina/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Lactonas , Infecções por Pseudomonas/microbiologia , Percepção de Quorum , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologiaRESUMO
Cytosolic Ca(2+) signals are fundamental for the early and late steps of myoblast differentiation and are, as in many cells, generated by Ca(2+) release from internal stores as well as by plasma membrane Ca(2+) entry. Our recent studies identified the store-operated Ca(2+) channels, Orai1 and TRPC1&C4, as crucial for the early steps of human myogenesis and for the late fusion events. In the present work, we assessed the role of the inositol-1,4,5 tris-phosphate receptor (IP3R) type 1 during human myoblast differentiation. We demonstrated, using siRNA strategy that IP3R1 is required for the expression of muscle-specific transcription factors such as myogenin and MEF2 (myocyte enhancer factor 2), and for the formation of myotubes. The knockdown of IP3R1 strongly reduced endogenous spontaneous Ca(2+) transients, and attenuated store-operated Ca(2+) entry. As well, two Ca(2+)-dependent key enzymes of muscle differentiation, NFAT and CamKII are down-regulated upon siIP3R1 treatment. On the contrary, the overexpression of IP3R1 accelerated myoblasts differentiation. These findings identify Ca(2+) release mediated by IP3R1 as an essential mechanism during the early steps of myoblast differentiation.