Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0300491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39150942

RESUMO

Replicons, derived from RNA viruses, are genetic constructs retaining essential viral enzyme genes while lacking key structural protein genes. Upon introduction into cells, the genes carried by the replicon RNA are expressed, and the RNA self-replicates, yet viral particle production does not take place. Typically, RNA replicons are transcribed in vitro and are then electroporated in cells. However, it would be advantageous for the replicon to be generated in cells following DNA transfection instead of RNA. In this study, a bacterial artificial chromosome (BAC) DNA encoding a SARS-CoV-2 replicon under control of a T7 promoter was transfected into HEK293T cells engineered to functionally express the T7 RNA polymerase (T7 RNAP). Upon transfection of the BAC DNA, we observed low, but reproducible expression of reporter proteins GFP and luciferase carried by this replicon. Expression of the reporter proteins required linearization of the BAC DNA prior to transfection. Moreover, expression occurred independently of T7 RNAP. Gene expression was also insensitive to remdesivir treatment, suggesting that it did not involve self-replication of replicon RNA. Similar results were obtained in highly SARS-CoV-2 infection-permissive Calu-3 cells. Strikingly, prior expression of the SARS-CoV-2 N protein boosted expression from transfected SARS-CoV-2 RNA replicon but not from the replicon BAC DNA. In conclusion, transfection of a large DNA encoding a coronaviral replicon led to reproducible replicon gene expression through an unidentified mechanism. These findings highlight a novel pathway toward replicon gene expression from transfected replicon cDNA, offering valuable insights for the development of methods for DNA-based RNA replicon applications.


Assuntos
Genes Reporter , Replicação do RNA , RNA Viral , Replicon , SARS-CoV-2 , Humanos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Cromossomos Artificiais Bacterianos/genética , COVID-19/virologia , COVID-19/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Regiões Promotoras Genéticas , Replicon/genética , Replicação do RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Transfecção , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
J Integr Bioinform ; 20(4)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047760

RESUMO

With an ever increasing amount of research data available, it becomes constantly more important to possess data literacy skills to benefit from this valuable resource. An integrative course was developed to teach students the fundamentals of data literacy through an engaging genome sequencing project. Each cohort of students performed planning of the experiment, DNA extraction, nanopore sequencing, genome sequence assembly, prediction of genes in the assembled sequence, and assignment of functional annotation terms to predicted genes. Students learned how to communicate science through writing a protocol in the form of a scientific paper, providing comments during a peer-review process, and presenting their findings as part of an international symposium. Many students enjoyed the opportunity to own a project and to work towards a meaningful objective.


Assuntos
Genoma , Alfabetização , Humanos , Estudantes , Sequência de Bases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA