Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
mBio ; 15(6): e0094324, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38727244

RESUMO

Bile acids play a critical role in the emulsification of dietary lipids, a critical step in the primary function of the small intestine, which is the digestion and absorption of food. Primary bile acids delivered into the small intestine are conjugated to enhance functionality, in part, by increasing aqueous solubility and preventing passive diffusion of bile acids out of the gut lumen. Bile acid function can be disrupted by the gut microbiota via the deconjugation of primary bile acids by bile salt hydrolases (BSHs), leading to their conversion into secondary bile acids through the expression of bacterial bile acid-inducible genes, a process often observed in malabsorption due to small intestinal bacterial overgrowth. By modeling the small intestinal microbiota in vitro using human small intestinal ileostomy effluent as the inocula, we show here that the infusion of physiologically relevant levels of oxygen, normally found in the proximal small intestine, reduced deconjugation of primary bile acids, in part, through the expansion of bacterial taxa known to have a low abundance of BSHs. Further recapitulating the small intestinal bile acid composition of the small intestine, limited conversion of primary into secondary bile acids was observed. Remarkably, these effects were preserved among four separate communities, each inoculated with a different small intestinal microbiota, despite a high degree of taxonomic variability under both anoxic and aerobic conditions. In total, these results provide evidence for a previously unrecognized role that the oxygenated environment of the small intestine plays in the maintenance of normal digestive physiology. IMPORTANCE: Conjugated primary bile acids are produced by the liver and exist at high concentrations in the proximal small intestine, where they are critical for proper digestion. Deconjugation of these bile acids with subsequent transformation via dehydroxylation into secondary bile acids is regulated by the colonic gut microbiota and reduces their digestive function. Using an in vitro platform modeling the small intestinal microbiota, we analyzed the ability of this community to transform primary bile acids and studied the effect of physiological levels of oxygen normally found in the proximal small intestine (5%) on this metabolic process. We found that oxygenation of the small intestinal microbiota inhibited the deconjugation of primary bile acids in vitro. These findings suggest that luminal oxygen levels normally found in the small intestine may maintain the optimal role of bile acids in the digestive process by regulating bile acid conversion by the gut microbiota.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Intestino Delgado , Oxigênio , Ácidos e Sais Biliares/metabolismo , Humanos , Intestino Delgado/microbiologia , Intestino Delgado/metabolismo , Oxigênio/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Amidoidrolases
3.
J Clin Invest ; 134(9)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512401

RESUMO

Bacterial translocation from the gut microbiota is a source of sepsis in susceptible patients. Previous work suggests that overgrowth of gut pathobionts, including Klebsiella pneumoniae, increases the risk of disseminated infection. Our data from a human dietary intervention study found that, in the absence of fiber, K. pneumoniae bloomed during microbiota recovery from antibiotic treatment. We thus hypothesized that dietary nutrients directly support or suppress colonization of this gut pathobiont in the microbiota. Consistent with our study in humans, complex carbohydrates in dietary fiber suppressed the colonization of K. pneumoniae and allowed for recovery of competing commensals in mouse models. In contrast, through ex vivo and in vivo modeling, we identified simple carbohydrates as a limiting resource for K. pneumoniae in the gut. As proof of principle, supplementation with lactulose, a nonabsorbed simple carbohydrate and an FDA-approved therapy, increased colonization of K. pneumoniae. Disruption of the intestinal epithelium led to dissemination of K. pneumoniae into the bloodstream and liver, which was prevented by dietary fiber. Our results show that dietary simple and complex carbohydrates were critical not only in the regulation of pathobiont colonization but also disseminated infection, suggesting that targeted dietary interventions may offer a preventative strategy in high-risk patients.


Assuntos
Carboidratos da Dieta , Microbioma Gastrointestinal , Infecções por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolismo , Humanos , Camundongos , Animais , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/prevenção & controle , Carboidratos da Dieta/metabolismo , Feminino , Masculino , Fibras na Dieta/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia
4.
Cell Mol Gastroenterol Hepatol ; 17(1): 131-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37739064

RESUMO

BACKGROUND & AIMS: Altered plasma acylcarnitine levels are well-known biomarkers for a variety of mitochondrial fatty acid oxidation disorders and can be used as an alternative energy source for the intestinal epithelium when short-chain fatty acids are low. These membrane-permeable fatty acid intermediates are excreted into the gut lumen via bile and are increased in the feces of patients with inflammatory bowel disease (IBD). METHODS: Herein, based on studies in human subjects, animal models, and bacterial cultures, we show a strong positive correlation between fecal carnitine and acylcarnitines and the abundance of Enterobacteriaceae in IBD where they can be consumed by bacteria both in vitro and in vivo. RESULTS: Carnitine metabolism promotes the growth of Escherichia coli via anaerobic respiration dependent on the cai operon, and acetylcarnitine dietary supplementation increases fecal carnitine levels with enhanced intestinal colonization of the enteric pathogen Citrobacter rodentium. CONCLUSIONS: In total, these results indicate that the increased luminal concentrations of carnitine and acylcarnitines in patients with IBD may promote the expansion of pathobionts belonging to the Enterobacteriaceae family, thereby contributing to disease pathogenesis.


Assuntos
Enterobacteriaceae , Doenças Inflamatórias Intestinais , Animais , Humanos , Enterobacteriaceae/metabolismo , Disbiose , Doenças Inflamatórias Intestinais/microbiologia , Carnitina/metabolismo , Ácidos Graxos/metabolismo , Escherichia coli , Biomarcadores
5.
J Cyst Fibros ; 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37813785

RESUMO

BACKGROUND: Alterations in gastrointestinal health are prominent manifestations of cystic fibrosis (CF) and can independently impact pulmonary function. Ivacaftor has been associated with robust improvements in pulmonary function and weight gain, but less is known about the impact of ivacaftor on the fecal microbiome, lipidome, and bile acids. METHODS: Stool samples from 18 patients with CF and gating mutations (ages 6-61 years, 13 pancreatic insufficient) were analyzed for fecal microbiome and lipidome composition as well as bile acid concentrations at baseline and after 3 months of treatment with ivacaftor. Microbiome composition was also assessed in a healthy reference cohort. RESULTS: Alpha and beta diversity of the microbiome were different between CF and reference cohort at baseline, but no treatment effect was seen in the CF cohort between baseline and 3 months. Seven lipids increased with treatment. No differences were seen in bile acid concentrations after treatment in CF. At baseline, 403 lipids and unconjugated bile acids were different between pancreatic insufficient (PI-CF) and sufficient (PS-CF) groups and 107 lipids were different between PI-CF and PS-CF after 3 months of treatment. CONCLUSIONS: The composition and diversity of the fecal microbiome were different in CF as compared to a healthy reference, and did not change after 3 months of ivacaftor. We detected modest differences in the fecal lipidome with treatment. Differences in lipid and bile acid profiles between PS-CF and PI-CF were attenuated after 3 months of treatment.

6.
Crit Rev Food Sci Nutr ; 63(22): 5620-5642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37667870

RESUMO

The primary aim of this review was to systematically evaluate the literature regarding the effect of pre-, pro-, or synbiotic supplementation in infant formula on the gastrointestinal microbiota. The Cochrane methodology for systematic reviews of randomized controlled trials (RCTs) was employed. Five databases were searched and 32 RCTs (2010-2021) were identified for inclusion: 20 prebiotic, 6 probiotic, and 6 synbiotic. The methods utilized to evaluate gastrointestinal microbiota varied across studies and included colony plating, fluorescence in situ hybridization, quantitative real-time polymerase chain reaction, or tagged sequencing of the 16S rRNA gene. Fecal Bifidobacterium levels increased with supplementation of prebiotics and synbiotics but not with probiotics alone. Probiotic and synbiotic supplementation generally increased fecal levels of the bacterial strain supplemented in the formula. Across all pre-, pro-, and synbiotic-supplemented formulas, results were inconsistent regarding fecal Clostridium levels. Fecal pH was lower with some prebiotic and synbiotic supplementation; however, no difference was seen with probiotics. Softer stools were often reported in infants supplemented with pre- and synbiotics, yet results were inconsistent for probiotic-supplemented formula. Limited evidence demonstrates that pre- and synbiotic supplementation increases fecal Bifidobacterium levels. Future studies utilizing comprehensive methodologies and additional studies in probiotics and synbiotics are warranted.


Assuntos
Microbioma Gastrointestinal , Probióticos , Simbióticos , Lactente , Humanos , Prebióticos , Revisões Sistemáticas como Assunto , Bifidobacterium
7.
Foods ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297350

RESUMO

In the present research, we investigated changes in the gut metabolome that occurred in response to the administration of the Laticaseibacillus rhamnosus strain GG (LGG). The probiotics were added to the ascending colon region of mature microbial communities established in a human intestinal microbial ecosystem simulator. Shotgun metagenomic sequencing and metabolome analysis suggested that the changes in microbial community composition corresponded with changes to metabolic output, and we can infer linkages between some metabolites and microorganisms. The in vitro method permits a spatially-resolved view of metabolic transformations under human physiological conditions. By this method, we found that tryptophan and tyrosine were mainly produced in the ascending colon region, while their derivatives were detected in the transverse and descending regions, revealing sequential amino acid metabolic pathways along with the colonic tract. The addition of LGG appeared to promote the production of indole propionic acid, which is positively associated with human health. Furthermore, the microbial community responsible for the production of indole propionic acid may be broader than is currently known.

8.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37292978

RESUMO

Dysbiosis of the gut microbiota is increasingly appreciated as both a consequence and precipitant of human disease. The outgrowth of the bacterial family Enterobacteriaceae is a common feature of dysbiosis, including the human pathogen Klebsiella pneumoniae . Dietary interventions have proven efficacious in the resolution of dysbiosis, though the specific dietary components involved remain poorly defined. Based on a previous human diet study, we hypothesized that dietary nutrients serve as a key resource for the growth of bacteria found in dysbiosis. Through human sample testing, and ex-vivo , and in vivo modeling, we find that nitrogen is not a limiting resource for the growth of Enterobacteriaceae in the gut, contrary to previous studies. Instead, we identify dietary simple carbohydrates as critical in colonization of K. pneumoniae . We additionally find that dietary fiber is necessary for colonization resistance against K. pneumoniae , mediated by recovery of the commensal microbiota, and protecting the host against dissemination from the gut microbiota during colitis. Targeted dietary therapies based on these findings may offer a therapeutic strategy in susceptible patients with dysbiosis.

9.
Hepatology ; 78(6): 1843-1857, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222264

RESUMO

BACKGROUND AND AIMS: There is great interest in identifying microbiome features as reliable noninvasive diagnostic and/or prognostic biomarkers for non-cirrhotic NASH fibrosis. Several cross-sectional studies have reported gut microbiome features associated with advanced NASH fibrosis and cirrhosis, where the most prominent features are associated with cirrhosis. However, no large, prospectively collected data exist establishing microbiome features that discern non-cirrhotic NASH fibrosis, integrate the fecal metabolome as disease biomarkers, and are unconfounded by BMI and age. APPROACH AND RESULTS: Results from shotgun metagenomic sequencing performed on fecal samples prospectively collected from 279 US patients with biopsy-proven NASH (F1-F3 fibrosis) enrolled in the REGENERATE I303 study were compared to those from 3 healthy control cohorts and integrated with the absolute quantification of fecal bile acids. Microbiota beta-diversity was different, and BMI- and age-adjusted logistic regression identified 12 NASH-associated species. Random forest prediction models resulted in an AUC of 0.75-0.81 in a receiver operator characteristic analysis. In addition, specific fecal bile acids were significantly lower in NASH and correlated with plasma C4 levels. Microbial gene abundance analysis revealed 127 genes increased in controls, many involving protein synthesis, whereas 362 genes were increased in NASH many involving bacterial environmental responses (false discovery rate < 0.01). Finally, we provide evidence that fecal bile acid levels may be a better discriminator of non-cirrhotic NASH versus health than either plasma bile acids or gut microbiome features. CONCLUSIONS: These results may have value as a set of baseline characteristics of non-cirrhotic NASH against which therapeutic interventions to prevent cirrhosis can be compared and microbiome-based diagnostic biomarkers identified.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Estudos Transversais , Cirrose Hepática/complicações , Fibrose , Ácidos e Sais Biliares , Fezes/microbiologia , Biomarcadores
10.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G354-G368, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36852920

RESUMO

Calorie restriction can enhance the regenerative capacity of the injured intestinal epithelium. Among other metabolic changes, calorie restriction can activate the autophagy pathway. Although independent studies have attributed the regenerative benefit of calorie restriction to downregulation of mTORC1, it is not known whether autophagy itself is required for the regenerative benefit of calorie restriction. We used mouse and organoid models with autophagy gene deletion to evaluate the contribution of autophagy to intestinal epithelial regeneration following calorie restriction. In the absence of injury, mice with intestinal epithelial-specific deletion of autophagy gene Atg7 (Atg7ΔIEC) exhibit weight loss and histological changes similar to wild-type mice following calorie restriction. Conversely, calorie-restricted Atg7ΔIEC mice displayed a significant reduction in regenerative crypt foci after irradiation compared with calorie-restricted wild-type mice. Targeted analyses of tissue metabolites in calorie-restricted mice revealed an association between calorie restriction and reduced glycocholic acid (GCA) in wild-type mice but not in Atg7ΔIEC mice. To evaluate whether GCA can directly modulate epithelial stem cell self-renewal, we performed enteroid formation assays with or without GCA. Wild-type enteroids exhibited reduced enteroid formation efficiency in response to GCA treatment, suggesting that reduced availability of GCA during calorie restriction may be one mechanism by which calorie restriction favors epithelial regeneration in a manner dependent upon epithelial autophagy. Taken together, our data support the premise that intestinal epithelial Atg7 is required for the regenerative benefit of calorie restriction, due in part to its role in modulating luminal GCA with direct effects on epithelial stem cell self-renewal.NEW & NOTEWORTHY Calorie restriction is associated with enhanced intestinal regeneration after irradiation, but the requirement of autophagy for this process is not known. Our data support the premise that intestinal epithelial autophagy is required for the regenerative benefit of calorie restriction. We also report that luminal levels of primary bile acid glycocholic acid are modulated by epithelial cell autophagy during calorie restriction with direct effects on epithelial stem cell function.


Assuntos
Restrição Calórica , Intestinos , Camundongos , Animais , Intestinos/fisiologia , Mucosa Intestinal/metabolismo , Células Epiteliais , Autofagia/genética
11.
Annu Rev Physiol ; 85: 449-468, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36375468

RESUMO

The interplay between diet, the gut microbiome, and host health is complex. Diets associated with health have many similarities: high fiber, unsaturated fatty acids, and polyphenols while being low in saturated fats, sodium, and refined carbohydrates. Over the past several decades, dietary patterns have changed significantly in Westernized nations with the increased consumption of calorically dense ultraprocessed foods low in fiber and high in saturated fats, salt, and refined carbohydrates, leading to numerous negative health consequences including obesity, metabolic syndrome, and cardiovascular disease. The gut microbiota is an environmental factor that interacts with diet and may also have an impact on health outcomes, many of which involve metabolites produced by the microbiota from dietary components that can impact the host. This review focuses on our current understanding of the complex relationship between diet, the gut microbiota, and host health, with examples of how diet can support health, increase an individual's risk for disease, and be used as a therapy for specific diseases.


Assuntos
Microbioma Gastrointestinal , Humanos , Dieta , Obesidade , Carboidratos
12.
Cell Rep ; 41(11): 111809, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516747

RESUMO

The gut microbiota influences acetylation on host histones by fermenting dietary fiber into butyrate. Although butyrate could promote histone acetylation by inhibiting histone deacetylases, it may also undergo oxidation to acetyl-coenzyme A (CoA), a necessary cofactor for histone acetyltransferases. Here, we find that epithelial cells from germ-free mice harbor a loss of histone H4 acetylation across the genome except at promoter regions. Using stable isotope tracing in vivo with 13C-labeled fiber, we demonstrate that the microbiota supplies carbon for histone acetylation. Subsequent metabolomic profiling revealed hundreds of labeled molecules and supported a microbial contribution to host fatty acid metabolism, which declined in response to colitis and correlated with reduced expression of genes involved in fatty acid oxidation. These results illuminate the flow of carbon from the diet to the host via the microbiota, disruptions to which may affect energy homeostasis in the distal gut and contribute to the development of colitis.


Assuntos
Colite , Microbiota , Camundongos , Animais , Acetilação , Histonas/metabolismo , Histona Acetiltransferases/metabolismo , Isótopos/metabolismo , Carbono/metabolismo , Butiratos , Ácidos Graxos
13.
Microbiome ; 10(1): 119, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35922830

RESUMO

BACKGROUND: The cervicovaginal (CV) microbiome is highly associated with vaginal health and disease in both pregnant and nonpregnant individuals. An overabundance of Gardnerella vaginalis (G. vaginalis) in the CV space is commonly associated with adverse reproductive outcomes including bacterial vaginosis (BV), sexually transmitted diseases, and preterm birth, while the presence of Lactobacillus spp. is often associated with reproductive health. While host-microbial interactions are hypothesized to contribute to CV health and disease, the mechanisms by which these interactions regulate CV epithelial function remain largely unknown. RESULTS: Using an in vitro co-culture model, we assessed the effects of Lactobacillus crispatus (L. crispatus) and G. vaginalis on the CV epithelial barrier, the immune mediators that could be contributing to decreased barrier integrity and the immune signaling pathways regulating the immune response. G. vaginalis, but not L. crispatus, significantly increased epithelial cell death and decreased epithelial barrier integrity in an epithelial cell-specific manner. A G. vaginalis-mediated epithelial immune response including NF-κB activation and proinflammatory cytokine release was initiated partially through TLR2-dependent signaling pathways. Additionally, investigation of the cytokine immune profile in human CV fluid showed distinctive clustering of cytokines by Gardnerella spp. abundance and birth outcome. CONCLUSIONS: The results of this study show microbe-specific effects on CV epithelial function. Altered epithelial barrier function through cell death and immune-mediated mechanisms by G. vaginalis, but not L. crispatus, indicates that host epithelial cells respond to bacteria-associated signals, resulting in altered epithelial function and ultimately CV disease. Additionally, distinct immune signatures associated with Gardnerella spp. or birth outcome provide further evidence that host-microbial interactions may contribute significantly to the biological mechanisms regulating reproductive outcomes. Video Abstract.


Assuntos
Lactobacillus crispatus , Nascimento Prematuro , Vaginose Bacteriana , Citocinas , Células Epiteliais , Feminino , Gardnerella vaginalis , Humanos , Imunidade , Recém-Nascido , Gravidez , Vagina/microbiologia , Vaginose Bacteriana/microbiologia
14.
Sci Immunol ; 7(76): eabn3127, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35857619

RESUMO

The baseline composition of T cells directly affects later response to pathogens, but the complexity of precursor states remains poorly defined. Here, we examined the baseline state of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells in unexposed individuals. SARS-CoV-2-specific CD4+ T cells were identified in prepandemic blood samples by major histocompatibility complex (MHC) class II tetramer staining and enrichment. Our data revealed a substantial number of SARS-CoV-2-specific T cells that expressed memory phenotype markers. Integrated phenotypic analyses demonstrated diverse preexisting memory states that included cells with distinct polarization features and trafficking potential to barrier tissues. T cell clones generated from tetramer-labeled cells cross-reacted with antigens from commensal bacteria in the skin and gastrointestinal tract. Direct ex vivo tetramer staining for one spike-specific population showed a similar level of cross-reactivity to sequences from endemic coronavirus and commensal bacteria. These data highlight the complexity of precursor T cell repertoire and implicate noninfectious exposures to common microbes as a key factor that shapes human preexisting immunity to SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Memória Imunológica , Glicoproteína da Espícula de Coronavírus , Linfócitos T
15.
Gut Microbes ; 14(1): 2083417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35658830

RESUMO

Complications of short bowel syndrome (SBS) include malabsorption and bacterial overgrowth, requiring prolonged dependence on parenteral nutrition (PN). We hypothesized that the intolerance of whole food in some SBS patients might be due to the effect of dietary fiber on the gut microbiome. Shotgun metagenomic sequencing and targeted metabolomics were performed using biospecimens collected from 55 children with SBS and a murine dietary fiber model. Bioinformatic analyses were performed on these datasets as well as from a healthy human dietary intervention study. Compared to healthy controls, the gut microbiota in SBS had lower diversity and increased Proteobacteria, a pattern most pronounced in children on PN and inversely correlated with whole food consumption. Whole food intake correlated with increased glycoside hydrolases (GH) and bile salt hydrolases (BSH) with reduced fecal conjugated bile acids suggesting that dietary fiber regulates BSH activity via GHs. Mechanistic evidence supporting this notion was generated via fecal and plasma bile acid profiling in a healthy human fiber-free dietary intervention study as well as in a dietary fiber mouse experiment. Gaussian mixture modeling of fecal bile acids was used to identify three clinically relevant SBS phenotypes. Dietary fiber is associated with bile acid deconjugation likely via an interaction between gut microbiota BSHs and GHs in the small intestine, which may lead to whole food intolerance in patients with SBS. This mechanism not only has potential utility in clinical phenotyping and targeted therapeutics in SBS based on bile acid metabolism but may have relevance to other intestinal disease states.


Assuntos
Microbioma Gastrointestinal , Amidoidrolases/metabolismo , Animais , Ácidos e Sais Biliares , Fibras na Dieta , Microbioma Gastrointestinal/fisiologia , Humanos , Camundongos
16.
Nutrients ; 14(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35334900

RESUMO

This proof-of-principle study analyzed fecal samples from 30 infants who participated in a randomized controlled trial on the effects of the macronutrient composition of infant formula on growth and energy balance. In that study, infants randomized to be fed cow milk formula (CMF) had faster weight-gain velocity during the first 4 months and higher weight-for-length Z scores up to 11.5 months than those randomized to an isocaloric extensive protein hydrolysate formula (EHF). Here we examined associations among infant formula composition, gut microbial composition and maturation, and children's weight status. Fecal samples collected before and monthly up to 4.5 months after randomization were analyzed by shotgun metagenomic sequencing and targeted metabolomics. The EHF group had faster maturation of gut microbiota than the CMF group, and increased alpha diversity driven by Clostridia taxa. Abundance of Ruminococcus gnavus distinguished the two groups after exclusive feeding of the assigned formula for 3 months. Abundance of Clostridia at 3-4 months negatively correlated with prior weight-gain velocity and body weight phenotypes when they became toddlers. Macronutrient differences between the formulas likely led to the observed divergence in gut microbiota composition that was associated with differences in transient rapid weight gain, a well-established predictor of childhood obesity and other comorbidities.


Assuntos
Microbioma Gastrointestinal , Obesidade Infantil , Animais , Bovinos , Criança , Feminino , Humanos , Fórmulas Infantis , Nutrientes , Aumento de Peso
17.
bioRxiv ; 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34873598

RESUMO

The baseline composition of T cells directly impacts later response to a pathogen, but the complexity of precursor states remains poorly defined. Here we examined the baseline state of SARS-CoV-2 specific T cells in unexposed individuals. SARS-CoV-2 specific CD4 + T cells were identified in pre-pandemic blood samples by class II peptide-MHC tetramer staining and enrichment. Our data revealed a substantial number of SARS-CoV-2 specific T cells that expressed memory phenotype markers, including memory cells with gut homing receptors. T cell clones generated from tetramer-labeled cells cross-reacted with bacterial peptides and responded to stool lysates in a MHC-dependent manner. Integrated phenotypic analyses revealed additional precursor diversity that included T cells with distinct polarized states and trafficking potential to other barrier tissues. Our findings illustrate a complex pre-existing memory pool poised for immunologic challenges and implicate non-infectious stimuli from commensal colonization as a factor that shapes pre-existing immunity. ONE SENTENCE SUMMARY: Pre-existing immunity to SARS-CoV-2 contains a complex pool of precursor lymphocytes that include differentiated cells with broad tissue tropism and the potential to cross-react with commensal antigens.

18.
Hepatology ; 74(6): 3427-3440, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34233020

RESUMO

BACKGROUND AND AIMS: Although germ-free mice are an indispensable tool in studying the gut microbiome and its effects on host physiology, they are phenotypically different than their conventional counterparts. While antibiotic-mediated microbiota depletion in conventional mice leads to physiologic alterations that often mimic the germ-free state, the degree to which the effects of microbial colonization on the host are reversible is unclear. The gut microbiota produce abundant short chain fatty acids (SCFAs), and previous studies have demonstrated a link between microbial-derived SCFAs and global hepatic histone acetylation in germ-free mice. APPROACH AND RESULTS: We demonstrate that global hepatic histone acetylation states measured by mass spectrometry remained largely unchanged despite loss of luminal and portal vein SCFAs after antibiotic-mediated microbiota depletion. In contrast to stable hepatic histone acetylation states, we see robust hepatic transcriptomic alterations after microbiota depletion. Additionally, neither dietary supplementation with supraphysiologic levels of SCFA nor the induction of hepatocyte proliferation in the absence of microbiota-derived SCFAs led to alterations in global hepatic histone acetylation. CONCLUSIONS: These results suggest that microbiota-dependent landscaping of the hepatic epigenome through global histone acetylation is static in nature, while the hepatic transcriptome is responsive to alterations in the gut microbiota.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Histona Acetiltransferases/metabolismo , Animais , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL
19.
J Pain ; 22(11): 1530-1544, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34029686

RESUMO

The present experiments determined the effects of the narrow-spectrum antibiotic vancomycin on inflammatory pain-stimulated and pain-depressed behaviors in rats. Persistent inflammatory pain was modeled using dilute formalin (0.5%). Two weeks of oral vancomycin administered in drinking water attenuated Phase II formalin pain-stimulated behavior, and prevented formalin pain-depressed wheel running. Fecal microbiota transplantation produced a non-significant trend toward reversal of the vancomycin effect on pain-stimulated behavior. Vancomycin depleted Firmicutes and Bacteroidetes populations in the gut while having a partial sparing effect on Lactobacillus species and Clostridiales. The vancomycin treatment effect was associated with an altered profile in amino acid concentrations in the gut with increases in arginine, glycine, alanine, proline, valine, leucine, and decreases in tyrosine and methionine. These results indicate that vancomycin may have therapeutic effects against persistent inflammatory pain conditions that are distal to the gut. PERSPECTIVE: The narrow-spectrum antibiotic vancomycin reduces pain-related behaviors in the formalin model of inflammatory pain. These data suggest that manipulation of the gut microbiome may be one method to attenuate inflammatory pain amplitude.


Assuntos
Aminoácidos/efeitos dos fármacos , Antibacterianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Dor/tratamento farmacológico , Vancomicina/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Inflamação/complicações , Dor/etiologia , Ratos Endogâmicos F344
20.
Crit Care Explor ; 3(3): e0360, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33786436

RESUMO

OBJECTIVES: The intestinal microbiome can modulate immune function through production of microbial-derived short-chain fatty acids. We explored whether intestinal dysbiosis in children with sepsis leads to changes in microbial-derived short-chain fatty acids in plasma and stool that are associated with immunometabolic dysfunction in peripheral blood mononuclear cells. DESIGN: Prospective observational pilot study. SETTING: Single academic PICU. PATIENTS: Forty-three children with sepsis/septic shock and 44 healthy controls. MEASUREMENTS AND MAIN RESULTS: Stool and plasma samples were serially collected for sepsis patients; stool was collected once for controls. The intestinal microbiome was assessed using 16S ribosomal RNA sequencing and alpha- and beta-diversity were determined. We measured short-chain fatty acids using liquid chromatography, peripheral blood mononuclear cell mitochondrial respiration using high-resolution respirometry, and immune function using ex vivo lipopolysaccharide-stimulated whole blood tumor necrosis factor-α. Sepsis patients exhibited reduced microbial diversity compared with healthy controls, with lower alpha- and beta-diversity. Reduced microbial diversity among sepsis patients (mainly from lower abundance of commensal obligate anaerobes) was associated with increased acetic and propionic acid and decreased butyric, isobutyric, and caproic acid. Decreased levels of plasma butyric acid were further associated with lower peripheral blood mononuclear cell mitochondrial respiration, which in turn, was associated with lower lipopolysaccharide-stimulated tumor necrosis factor-α. However, neither intestinal dysbiosis nor specific patterns of short-chain fatty acids were associated with lipopolysaccharide-stimulated tumor necrosis factor-α. CONCLUSIONS: Intestinal dysbiosis was associated with altered short-chain fatty acid metabolites in children with sepsis, but these findings were not linked directly to mitochondrial or immunologic changes. More detailed mechanistic studies are needed to test the role of microbial-derived short-chain fatty acids in the progression of sepsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA