Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1417437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114287

RESUMO

Introduction: Using a non-human primate (NHP) model of maternal Western-style diet (mWSD) feeding during pregnancy and lactation, we previously reported altered offspring beta:alpha cell ratio in vivo and insulin hyper-secretion ex vivo. Mitochondria are known to maintain beta-cell function by producing ATP for insulin secretion. In response to nutrient stress, the mitochondrial network within beta cells undergoes morphological changes to maintain respiration and metabolic adaptability. Given that mitochondrial dynamics have also been associated with cellular fate transitions, we assessed whether mWSD exposure was associated with changes in markers of beta-cell maturity and/or mitochondrial morphology that might explain the offspring islet phenotype. Methods: We evaluated the expression of beta-cell identity/maturity markers (NKX6.1, MAFB, UCN3) via florescence microscopy in islets of Japanese macaque pre-adolescent (1 year old) and peri-adolescent (3-year-old) offspring born to dams fed either a control diet or WSD during pregnancy and lactation and weaned onto WSD. Mitochondrial morphology in NHP offspring beta cells was analyzed in 2D by transmission electron microscopy and in 3D using super resolution microscopy to deconvolve the beta-cell mitochondrial network. Results: There was no difference in the percent of beta cells expressing key maturity markers in NHP offspring from WSD-fed dams at 1 or 3 years of age; however, beta cells of WSD-exposed 3 year old offspring showed increased levels of NKX6.1 per beta cell at 3 years of age. Regardless of maternal diet, the beta-cell mitochondrial network was found to be primarily short and fragmented at both ages in NHP; overall mitochondrial volume increased with age. In utero and lactational exposure to maternal WSD consumption may increase mitochondrial fragmentation. Discussion: Despite mWSD consumption having clear developmental effects on offspring beta:alpha cell ratio and insulin secretory response to glucose, this does not appear to be mediated by changes to beta-cell maturity or the beta-cell mitochondrial network. In general, the more fragmented mitochondrial network in NHP beta cells suggests greater ability for metabolic flexibility.


Assuntos
Dieta Ocidental , Células Secretoras de Insulina , Fenômenos Fisiológicos da Nutrição Materna , Mitocôndrias , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Gravidez , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Dieta Ocidental/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Masculino , Lactação
2.
Microorganisms ; 12(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39065137

RESUMO

Gestational diabetes mellitus (GDM) triggers alterations in the maternal microbiome. Alongside metabolic shifts, microbial products may impact clinical factors and influence pregnancy outcomes. We investigated maternal microbiome-metabolomic changes, including over 600 metabolites from a subset of the "Choosing Healthy Options in Carbohydrate Energy" (CHOICE) study. Women diagnosed with GDM were randomized to a diet higher in complex carbohydrates (CHOICE, n = 18, 60% complex carbohydrate/25% fat/15% protein) or a conventional GDM diet (CONV, n = 16, 40% carbohydrate/45% fat/15% protein). All meals were provided. Diets were eucaloric, and fiber content was similar. CHOICE was associated with increases in trimethylamine N-oxide, indoxyl sulfate, and several triglycerides, while CONV was associated with hippuric acid, betaine, and indole propionic acid, suggestive of a healthier metabolome. Conversely, the microbiome of CHOICE participants was enriched with carbohydrate metabolizing genes and beneficial taxa such as Bifidobacterium adolescentis, while CONV was associated with inflammatory pathways including antimicrobial resistance and lipopolysaccharide biosynthesis. We also identified latent metabolic groups not associated with diet: a metabolome associated with less of a decrease in fasting glucose, and another associated with relatively higher fasting triglycerides. Our results suggest that GDM diets produce specific microbial and metabolic responses during pregnancy, while host factors also play a role in triglycerides and glucose metabolism.

3.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826380

RESUMO

Early-life exposure to maternal obesity or a maternal calorically dense Western-style diet (WSD) is strongly associated with a greater risk of metabolic diseases in offspring, most notably insulin resistance and metabolic dysfunction-associated steatotic liver disease (MASLD). Prior studies in our well-characterized Japanese macaque model demonstrated that offspring of dams fed a WSD, even when weaned onto a control (CTR) diet, had reductions in skeletal muscle mitochondrial metabolism and increased skeletal muscle insulin resistance compared to offspring of dams on CTR diet. In the current study, we employed a nested design to test for differences in gene expression in skeletal muscle from lean 3-year-old adolescent offspring from dams fed a maternal WSD in both the presence and absence of maternal obesity or lean dams fed a CTR diet. We included offspring weaned to both a WSD or CTR diet to further account for differences in response to post-weaning diet and interaction effects between diets. Overall, we found that a maternal WSD fed to dams during pregnancy and lactation was the principal driver of differential gene expression (DEG) in offspring muscle at this time point. We identified key gene pathways important in insulin signaling including PI3K-Akt and MAP-kinase, regulation of muscle regeneration, and transcription-translation feedback loops, in both male and female offspring. Muscle DEG showed no measurable difference between offspring of obese dams on WSD compared to those of lean dams fed WSD. A post-weaning WSD effected offspring transcription only in individuals from the maternal CTR diet group but not in maternal WSD group. Collectively, we identify that maternal diet composition has a significant and lasting impact on offspring muscle transcriptome and influences later transcriptional response to WSD in muscle, which may underlie the increased metabolic disease risk in offspring.

4.
Am J Obstet Gynecol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871238

RESUMO

BACKGROUND: In recent years, pragmatic metformin use in pregnancy has stretched to include prediabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and (most recently) preeclampsia. However, with its expanded use, concerns of unintended harm have been raised. OBJECTIVE: This study developed an experimental primate model and applied ultrahigh performance liquid chromatography coupled to triple-quadrupole mass spectrometry for direct quantitation of maternal and fetal tissue metformin levels with detailed fetal biometry and histopathology. STUDY DESIGN: Within 30 days of confirmed conception (defined as early pregnancy), 13 time-bred (timed-mated breeding) Rhesus dams with pregnancies designated for fetal necropsy were initiated on twice-daily human dose-equivalent 10 mg/kg metformin or vehicle control. Pregnant dams were maintained as pairs and fed either a control chow or 36% fat Western-style diet. Metformin or placebo vehicle control was delivered in various treats while the animals were separated via a slide. A cesarean delivery was performed at gestational day 145, and amniotic fluid and blood were collected, and the fetus and placenta were delivered. The fetus was immediately necropsied by trained primate center personnel. All fetal organs were dissected, measured, sectioned, and processed per clinical standards. Fluid and tissue metformin levels were assayed using validated ultrahigh performance liquid chromatography coupled to triple-quadrupole mass spectrometry in selected reaction monitoring against standard curves. RESULTS: Among 13 pregnancies at gestational day 145 with fetal necropsy, 1 dam and its fetal tissues had detectable metformin levels despite being allocated to the vehicle control group (>1 µmol metformin/kg maternal weight or fetal or placental tissue), whereas a second fetus allocated to the vehicle control group had severe fetal growth restriction (birthweight of 248.32 g [<1%]) and was suspected of having a fetal congenital condition. After excluding these 2 fetal pregnancies from further analyses, 11 fetuses from dams initiated on either vehicle control (n=4: 3 female and 1 male fetuses) or 10 mg/kg metformin (n=7: 5 female and 2 male fetuses) were available for analyses. Among dams initiated on metformin at gestational day 30 (regardless of maternal diet), significant bioaccumulation within the fetal kidney (0.78-6.06 µmol/kg; mean of 2.48 µmol/kg), liver (0.16-0.73 µmol/kg; mean of 0.38 µmol/kg), fetal gut (0.28-1.22 µmol/kg; mean of 0.70 µmol/kg), amniotic fluid (0.43-3.33 µmol/L; mean of 1.88 µmol/L), placenta (0.16-1.00 µmol/kg; mean of 0.50 µmol/kg), fetal serum (0.00-0.66 µmol/L; mean of 0.23 µmol/L), and fetal urine (4.10-174.10 µmol/L; mean of 38.5 µmol/L) was observed, with fetal levels near biomolar equivalent to maternal levels (maternal serum: 0.18-0.86 µmol/L [mean of 0.46 µmol/L]; maternal urine: 42.60-254.00 µmol/L [mean of 149.30 µmol/L]). Western-style diet feeding neither accelerated nor reduced metformin bioaccumulations in maternal or fetal serum, urine, amniotic fluid, placenta, or fetal tissues. In these 11 animals, fetal bioaccumulation of metformin was associated with less fetal skeletal muscle (57% lower cross-sectional area of gastrocnemius) and decreased liver, heart, and retroperitoneal fat masses (P<.05), collectively driving lower delivery weight (P<.0001) without changing the crown-rump length. Sagittal sections of fetal kidneys demonstrated delayed maturation, with disorganized glomerular generations and increased cortical thickness. This renal dysmorphology was not accompanied by structural or functional changes indicative of renal insufficiency. CONCLUSION: Our study demonstrates fetal bioaccumulation of metformin with associated fetal growth restriction and renal dysmorphology after maternal initiation of the drug within 30 days of conception in primates. Given these results and the prevalence of metformin use during pregnancy, additional investigation of any potential immediate and enduring effects of prenatal metformin use is warranted.

5.
Nutrients ; 16(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931163

RESUMO

Maternal obesity and/or Western diet (WD) is associated with an increased risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in offspring, driven, in part, by the dysregulation of the early life microbiome. Here, using a mouse model of WD-induced maternal obesity, we demonstrate that exposure to a disordered microbiome from WD-fed dams suppressed circulating levels of endogenous ligands of the aryl hydrocarbon receptor (AHR; indole, indole-3-acetate) and TMAO (a product of AHR-mediated transcription), as well as hepatic expression of Il10 (an AHR target), in offspring at 3 weeks of age. This signature was recapitulated by fecal microbial transfer from WD-fed pregnant dams to chow-fed germ-free (GF) lactating dams following parturition and was associated with a reduced abundance of Lactobacillus in GF offspring. Further, the expression of Il10 was downregulated in liver myeloid cells and in LPS-stimulated bone marrow-derived macrophages (BMDM) in adult offspring, suggestive of a hypo-responsive, or tolerant, innate immune response. BMDMs from adult mice lacking AHR in macrophages exhibited a similar tolerogenic response, including diminished expression of Il10. Overall, our study shows that exposure to maternal WD alters microbial metabolites in the offspring that affect AHR signaling, potentially contributing to innate immune hypo-responsiveness and progression of MASLD, highlighting the impact of early life gut dysbiosis on offspring metabolism. Further investigations are warranted to elucidate the complex interplay between maternal diet, gut microbial function, and the development of neonatal innate immune tolerance and potential therapeutic interventions targeting these pathways.


Assuntos
Dieta Ocidental , Microbioma Gastrointestinal , Imunidade Inata , Receptores de Hidrocarboneto Arílico , Triptofano , Animais , Feminino , Gravidez , Dieta Ocidental/efeitos adversos , Triptofano/metabolismo , Camundongos , Receptores de Hidrocarboneto Arílico/metabolismo , Camundongos Endogâmicos C57BL , Interleucina-10/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Obesidade Materna/metabolismo , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Masculino , Macrófagos/metabolismo , Macrófagos/imunologia , Modelos Animais de Doenças
6.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892139

RESUMO

Maternal obesity and over/undernutrition can have a long-lasting impact on offspring health during critical periods in the first 1000 days of life. Children born to mothers with obesity have reduced immune responses to stimuli which increase susceptibility to infections. Recently, maternal western-style diets (WSDs), high in fat and simple sugars, have been associated with skewing neonatal immune cell development, and recent evidence suggests that dysregulation of innate immunity in early life has long-term consequences on metabolic diseases and behavioral disorders in later life. Several factors contribute to abnormal innate immune tolerance or trained immunity, including changes in gut microbiota, metabolites, and epigenetic modifications. Critical knowledge gaps remain regarding the mechanisms whereby these factors impact fetal and postnatal immune cell development, especially in precursor stem cells in bone marrow and fetal liver. Components of the maternal microbiota that are transferred from mothers consuming a WSD to their offspring are understudied and identifying cause and effect on neonatal innate and adaptive immune development needs to be refined. Tools including single-cell RNA-sequencing, epigenetic analysis, and spatial location of specific immune cells in liver and bone marrow are critical for understanding immune system programming. Considering the vital role immune function plays in offspring health, it will be important to understand how maternal diets can control developmental programming of innate and adaptive immunity.


Assuntos
Dieta Ocidental , Desenvolvimento Fetal , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Dieta Ocidental/efeitos adversos , Animais , Desenvolvimento Fetal/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Epigênese Genética , Microbioma Gastrointestinal/imunologia , Imunidade Inata , Fenômenos Fisiológicos da Nutrição Materna , Feto/imunologia
7.
Proc Natl Acad Sci U S A ; 121(17): e2320934121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630726

RESUMO

Cullin RING E3 ligases (CRL) have emerged as key regulators of disease-modifying pathways and therapeutic targets. Cullin3 (Cul3)-containing CRL (CRL3) has been implicated in regulating hepatic insulin and oxidative stress signaling. However, CRL3 function in liver pathophysiology is poorly defined. Here, we report that hepatocyte Cul3 knockout results in rapid resolution of steatosis in obese mice. However, the remarkable resistance of hepatocyte Cul3 knockout mice to developing steatosis does not lead to overall metabolic improvement but causes systemic metabolic disturbances. Liver transcriptomics analysis identifies that CRL3 inactivation causes persistent activation of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant defense pathway, which also reprograms the lipid transcriptional network to prevent TG storage. Furthermore, global metabolomics reveals that NRF2 activation induces numerous NAD+-consuming aldehyde dehydrogenases to increase the cellular NADH/NAD+ ratio, a redox imbalance termed NADH reductive stress that inhibits the glycolysis-citrate-lipogenesis axis in Cul3 knockout livers. As a result, this NRF2-induced cellular lipid storage defect promotes hepatic ceramide accumulation, elevates circulating fatty acids, and worsens systemic insulin resistance in a vicious cycle. Hepatic lipid accumulation is restored, and liver injury and hyperglycemia are attenuated when NRF2 activation and NADH reductive stress are abolished in hepatocyte Cul3/Nrf2 double-knockout mice. The resistance to hepatic steatosis, hyperglycemia, and NADH reductive stress are observed in hepatocyte Keap1 knockout mice with NRF2 activation. In summary, our study defines a critical role of CRL3 in hepatic metabolic regulation and demonstrates that the CRL3 downstream NRF2 overactivation causes hepatic metabolic maladaptation to obesity and insulin resistance.


Assuntos
Fígado Gorduroso , Hiperglicemia , Resistência à Insulina , Animais , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , NAD/metabolismo , Proteínas Culina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Camundongos Knockout , Lipídeos
8.
STAR Protoc ; 5(1): 102849, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38324447

RESUMO

Studying fetal hematopoiesis is challenging as hematopoiesis transitions from the liver to bone marrow. Obtaining human samples is not possible, and small animal models may not provide sufficient biological material. Here, we present a protocol for isolating hematopoietic cells from the nonhuman primate fetal liver and bone. We describe steps for using cells from the same fetus for fluorescence lifetime imaging microscopy to measure metabolism, assessing cellular function, and flow cytometry for immunophenotyping at the single-cell level. For complete details on the use and execution of this protocol, please refer to Nash et al. (2023).1.


Assuntos
Leucócitos , Fígado , Animais , Humanos , Imunofenotipagem , Feto , Primatas
9.
Obesity (Silver Spring) ; 32(1): 187-199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37869908

RESUMO

OBJECTIVE: Fetal exposures may impact offspring epigenetic signatures and adiposity. The authors hypothesized that maternal metabolic traits associate with cord blood DNA methylation, which, in turn, associates with child adiposity. METHODS: Fasting serum was obtained in 588 pregnant women (27-34 weeks' gestation), and insulin, glucose, high-density lipoprotein cholesterol, triglycerides, and free fatty acids were measured. Cord blood DNA methylation and child adiposity were measured at birth, 4-6 months, and 4-6 years. The association of maternal metabolic traits with DNA methylation (429,246 CpGs) for differentially methylated probes (DMPs) and regions (DMRs) was tested. The association of the first principal component of each DMR with child adiposity was tested, and mediation analysis was performed. RESULTS: Maternal triglycerides were associated with the most DMPs and DMRs of all traits tested (261 and 198, respectively, false discovery rate < 0.05). DMRs were near genes involved in immune function and lipid metabolism. Triglyceride-associated CpGs were associated with child adiposity at 4-6 months (32 CpGs) and 4-6 years (2 CpGs). One, near CD226, was observed at both timepoints, mediating 10% and 22% of the relationship between maternal triglycerides and child adiposity at 4-6 months and 4-6 years, respectively. CONCLUSIONS: DNA methylation may play a role in the association of maternal triglycerides and child adiposity.


Assuntos
Adiposidade , Metilação de DNA , Recém-Nascido , Criança , Humanos , Feminino , Gravidez , Triglicerídeos , Adiposidade/genética , Metabolismo dos Lipídeos/genética , Sangue Fetal/metabolismo , Obesidade/metabolismo
10.
Pediatr Obes ; 19(2): e13091, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38084670

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is on the rise among youth. Identifying biomarkers of NAFLD progression/risk can aid in prevention efforts. AIMS: This pilot study investigated associations of two endotoxin biomarkers-lipopolysaccharide-binding protein (LBP) and anti-endotoxin core immunoglobulin G (EndoCab)-with markers of NAFLD among 99 Latino/Latina adolescents (11-19 years) with obesity. MATERIALS & METHODS: We used linear regression to examine associations of each endotoxin biomarker (per 1-SD) with hepatic fat fraction (HFF), liver volume, and liver stiffness. RESULTS: We found positive associations of LBP with HFF and liver volume. Each 1-SD increment in LBP corresponded with 2.35% (95% CI: 0.46%, 4.23%) higher HFF and 0.14 (0.06, 0.23) L greater liver volume after adjusting for age, sex, and maternal education. Accounting for abdominal adiposity and Tanner stage did not change results. Excluding 72 participants with NAFLD attenuated associations of LBP with HFF but associations with liver volume persisted (0.11 [0.01, 0.21] L). EndoCab was not associated with any liver outcomes. Neither endotoxin biomarker predicted liver stiffness. DISCUSSION/CONCLUSION: While additional research is warranted, our results support LBP as a biomarker of NAFLD risk/progression in high-risk youth.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adolescente , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Endotoxinas/metabolismo , Projetos Piloto , Fígado/diagnóstico por imagem , Fígado/metabolismo , Biomarcadores/metabolismo
11.
Cancer Lett ; 578: 216455, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865160

RESUMO

Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls. Upon cerulein challenge to induce pancreatitis, U2KO animals had reduced levels of several pancreatitis-relevant cytokines, amylase and lipase in the serum, reduced tissue damage, and lessened neutrophil infiltration into the pancreatic tissue. Mechanistically, cerulein-challenged U2KO animals revealed reduced NF-κB activation compared to controls. In vitro promoter binding studies confirmed the reduction of NF-κB binding to its target molecules supporting UBAP2 as a new regulator of inflammation in pancreatitis and may be exploited as a therapeutic target in future to inhibit pancreatitis.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Pancreatite , Camundongos , Animais , Ceruletídeo/efeitos adversos , NF-kappa B/metabolismo , Adenocarcinoma/patologia , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/prevenção & controle , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/prevenção & controle , Pâncreas/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Glucose/metabolismo , Doença Aguda
12.
Diabetes ; 72(12): 1766-1780, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725952

RESUMO

Maternal consumption of a Western-style diet (mWD) during pregnancy alters fatty acid metabolism and reduces insulin sensitivity in fetal skeletal muscle. The long-term impact of these fetal adaptations and the pathways underlying disordered lipid metabolism are incompletely understood. Therefore, we tested whether a mWD chronically fed to lean, insulin-sensitive adult Japanese macaques throughout pregnancy and lactation would impact skeletal muscle oxidative capacity and lipid metabolism in adolescent offspring fed a postweaning (pw) Western-style diet (WD) or control diet (CD). Although body weight was not different, retroperitoneal fat mass and subscapular skinfold thickness were significantly higher in pwWD offspring consistent with elevated fasting insulin and glucose. Maximal complex I (CI)-dependent respiration in muscle was lower in mWD offspring in the presence of fatty acids, suggesting that mWD impacts muscle integration of lipid with nonlipid oxidation. Abundance of all five oxidative phosphorylation complexes and VDAC, but not ETF/ETFDH, were reduced with mWD, partially explaining the lower respiratory capacity with lipids. Muscle triglycerides increased with pwWD; however, the fold increase in lipid saturation, 1,2-diacylglycerides, and C18 ceramide compared between pwCD and pwWD was greatest in mWD offspring. Reductions in CI abundance and VDAC correlated with reduced markers of oxidative stress, suggesting that these reductions may be an early-life adaptation to mWD to mitigate excess reactive oxygen species. Altogether, mWD, independent of maternal obesity or insulin resistance, results in sustained metabolic reprogramming in offspring muscle despite a healthy diet intervention. ARTICLE HIGHLIGHTS: In lean, active adolescent offspring, a postweaning Western-style diet (pwWD) leads to shifts in body fat distribution that are associated with poorer insulin sensitivity. Fatty acid-linked oxidative metabolism was reduced in skeletal muscles from offspring exposed to maternal Western-style diet (mWD) even when weaned to a healthy control diet for years. Reduced oxidative phosphorylation complex I-V and VDAC1 abundance partially explain decreased skeletal muscle respiration in mWD offspring. Prior exposure to mWD results in greater fold increase with pwWD in saturated lipids and bioactive lipid molecules (i.e. ceramide and sphingomyelin) associated with insulin resistance.


Assuntos
Resistência à Insulina , Humanos , Animais , Gravidez , Feminino , Adolescente , Resistência à Insulina/fisiologia , Macaca fuscata/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Insulina/metabolismo , Dieta Ocidental/efeitos adversos , Ácidos Graxos/metabolismo , Ceramidas/metabolismo , Dieta Hiperlipídica
13.
Diabetes Care ; 46(11): 1931-1940, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37643311

RESUMO

OBJECTIVE: Nutrition therapy for gestational diabetes mellitus (GDM) has conventionally focused on carbohydrate restriction. In a randomized controlled trial (RCT), we tested the hypothesis that a diet (all meals provided) with liberalized complex carbohydrate (60%) and lower fat (25%) (CHOICE diet) could improve maternal insulin resistance and 24-h glycemia, resulting in reduced newborn adiposity (NB%fat; powered outcome) versus a conventional lower-carbohydrate (40%) and higher-fat (45%) (LC/CONV) diet. RESEARCH DESIGN AND METHODS: After diagnosis (at ∼28-30 weeks' gestation), 59 women with diet-controlled GDM (mean ± SEM; BMI 32 ± 1 kg/m2) were randomized to a provided LC/CONV or CHOICE diet (BMI-matched calories) through delivery. At 30-31 and 36-37 weeks of gestation, a 2-h, 75-g oral glucose tolerance test (OGTT) was performed and a continuous glucose monitor (CGM) was worn for 72 h. Cord blood samples were collected at delivery. NB%fat was measured by air displacement plethysmography (13.4 ± 0.4 days). RESULTS: There were 23 women per group (LC/CONV [214 g/day carbohydrate] and CHOICE [316 g/day carbohydrate]). For LC/CONV and CHOICE, respectively (mean ± SEM), NB%fat (10.1 ± 1 vs. 10.5 ± 1), birth weight (3,303 ± 98 vs. 3,293 ± 81 g), and cord C-peptide levels were not different. Weight gain, physical activity, and gestational age at delivery were similar. At 36-37 weeks of gestation, CGM fasting (86 ± 3 vs. 90 ± 3 mg/dL), 1-h postprandial (119 ± 3 vs. 117 ± 3 mg/dL), 2-h postprandial (106 ± 3 vs. 108 ± 3 mg/dL), percent time in range (%TIR; 92 ± 1 vs. 91 ± 1), and 24-h glucose area under the curve values were similar between diets. The %time >120 mg/dL was statistically higher (8%) in CHOICE, as was the nocturnal glucose AUC; however, nocturnal %TIR (63-100 mg/dL) was not different. There were no between-group differences in OGTT glucose and insulin levels at 36-37 weeks of gestation. CONCLUSIONS: A ∼100 g/day difference in carbohydrate intake did not result in between-group differences in NB%fat, cord C-peptide level, maternal 24-h glycemia, %TIR, or insulin resistance indices in diet-controlled GDM.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Gravidez , Feminino , Recém-Nascido , Humanos , Adiposidade , Peptídeo C , Distribuição Aleatória , Glicemia , Obesidade , Glucose , Dieta com Restrição de Gorduras
14.
Diabetes ; 72(9): 1214-1227, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347736

RESUMO

Metformin is used by women during pregnancy to manage diabetes and crosses the placenta, yet its effects on the fetus are unclear. We show that the liver is a site of metformin action in fetal sheep and macaques, given relatively abundant OCT1 transporter expression and hepatic uptake following metformin infusion into fetal sheep. To determine the effects of metformin action, we performed studies in primary hepatocytes from fetal sheep, fetal macaques, and juvenile macaques. Metformin increases AMP-activated protein kinase (AMPK) signaling, decreases mammalian target of rapamycin (mTOR) signaling, and decreases glucose production in fetal and juvenile hepatocytes. Metformin also decreases oxygen consumption in fetal hepatocytes. Unique to fetal hepatocytes, metformin activates stress pathways (e.g., increased PGC1A gene expression, NRF-2 protein abundance, and phosphorylation of eIF2α and CREB proteins) alongside perturbations in hepatokine expression (e.g., increased growth/differentiation factor 15 [GDF15] and fibroblast growth factor 21 [FGF21] expression and decreased insulin-like growth factor 2 [IGF2] expression). Similarly, in liver tissue from sheep fetuses infused with metformin in vivo, AMPK phosphorylation, NRF-2 protein, and PGC1A expression are increased. These results demonstrate disruption of signaling and metabolism, induction of stress, and alterations in hepatokine expression in association with metformin exposure in fetal hepatocytes. ARTICLE HIGHLIGHTS: The major metformin uptake transporter OCT1 is expressed in the fetal liver, and fetal hepatic uptake of metformin is observed in vivo. Metformin activates AMPK, reduces glucose production, and decreases oxygen consumption in fetal hepatocytes, demonstrating similar effects as in juvenile hepatocytes. Unique to fetal hepatocytes, metformin activates metabolic stress pathways and alters the expression of secreted growth factors and hepatokines. Disruption of signaling and metabolism with increased stress pathways and reduced anabolic pathways by metformin in the fetal liver may underlie reduced growth in fetuses exposed to metformin.


Assuntos
Metformina , Gravidez , Feminino , Animais , Ovinos , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Hepatócitos/metabolismo , Glucose/metabolismo , Feto/metabolismo , Mamíferos/metabolismo
15.
Receptors (Basel) ; 2(1): 1-15, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37284280

RESUMO

Numerous nuclear receptors including farnesoid X receptor, liver X receptor, peroxisome proliferator-activated receptors, pregnane X receptor, hepatic nuclear factors have been extensively studied within the context of non-alcoholic fatty liver disease (NAFLD). Following the first description of the Aryl hydrocarbon Receptor (AhR) in the 1970s and decades of research which unveiled its role in toxicity and pathophysiological processes, the functional significance of AhR in NAFLD has not been completely decoded. Recently, multiple research groups have utilized a plethora of in vitro and in vivo models that mimic NAFLD pathology to investigate the functional significance of AhR in fatty liver disease. This review provides a comprehensive account of studies describing both the beneficial and possible detrimental role of AhR in NAFLD. A plausible reconciliation for the paradox indicating AhR as a 'double-edged sword' in NAFLD is discussed. Finally, understanding AhR ligands and their signaling in NAFLD will facilitate us to probe AhR as a potential drug target to design innovative therapeutics against NAFLD in the near future.

16.
Am J Physiol Endocrinol Metab ; 324(6): E577-E588, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37134140

RESUMO

Maternal overnutrition is associated with increased susceptibility to type 2 diabetes in the offspring. Rodent models have shown that maternal overnutrition influences islet function in offspring. To determine whether maternal Western-style diet (WSD) alters prejuvenile islet function in a model that approximates that of human offspring, we utilized a well-characterized Japanese macaque model. We compared islet function from offspring exposed to WSD throughout pregnancy and lactation and weaned to WSD (WSD/WSD) compared with islets from offspring exposed only to postweaning WSD (CD/WSD) at 1 yr of age. WSD/WSD offspring islets showed increased basal insulin secretion and an exaggerated increase in glucose-stimulated insulin secretion, as assessed by dynamic ex vivo perifusion assays, relative to CD/WSD-exposed offspring. We probed potential mechanisms underlying insulin hypersecretion using transmission electron microscopy to evaluate ß-cell ultrastructure, qRT-PCR to quantify candidate gene expression, and Seahorse assay to assess mitochondrial function. Insulin granule density, mitochondrial density, and mitochondrial DNA ratio were similar between groups. However, islets from WSD/WSD male and female offspring had increased expression of transcripts known to facilitate stimulus-secretion coupling and changes in the expression of cell stress genes. Seahorse assay revealed increased spare respiratory capacity in islets from WSD/WSD male offspring. Overall, these results show that maternal WSD feeding confers changes to genes governing insulin secretory coupling and results in insulin hypersecretion as early as the postweaning period. The results suggest a maternal diet leads to early adaptation and developmental programming in offspring islet genes that may underlie future ß-cell dysfunction.NEW & NOTEWORTHY Programed adaptations in islets in response to maternal WSD exposure may alter ß-cell response to metabolic stress in offspring. We show that islets from maternal WSD-exposed offspring hypersecrete insulin, possibly due to increased components of stimulus-secretion coupling. These findings suggest that islet hyperfunction is programed by maternal diet, and changes can be detected as early as the postweaning period in nonhuman primate offspring.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Gravidez , Animais , Masculino , Feminino , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Ocidental/efeitos adversos , Primatas/metabolismo , Expressão Gênica , Ilhotas Pancreáticas/metabolismo
17.
Cell Rep ; 42(4): 112393, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058409

RESUMO

Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Humanos , Animais , Feminino , Dieta Ocidental/efeitos adversos , Primatas , Imunidade Inata
18.
iScience ; 26(1): 105750, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36590177

RESUMO

Establishing metabolic programming begins during fetal and postnatal development, and early-life lipid exposures play a critical role during neonatal adipogenesis. We define how neonatal consumption of a low omega-6 to -3 fatty acid ratio (n6/n3 FA ratio) establishes FA oxidation in adipocyte precursor cells (APCs) before they become adipocytes. In vivo, APCs isolated from mouse pups exposed to the low n6/n3 FA ratio had superior FA oxidation capacity, elevated beige adipocyte mRNAs Ppargc1α, Ucp2, and Runx1, and increased nuclear receptor NR2F2 protein. In vitro, APC treatment with NR2F2 ligand-induced beige adipocyte mRNAs and increased mitochondrial potential but not mass. Single-cell RNA-sequencing analysis revealed low n6/n3 FA ratio yielded more mitochondrial-high APCs and linked APC NR2F2 levels with beige adipocyte signatures and FA oxidation. Establishing beige adipogenesis is of clinical relevance, because fat depots with energetically active, smaller, and more numerous adipocytes improve metabolism and delay metabolic dysfunction.

19.
Hepatol Commun ; 7(2): e0014, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36691970

RESUMO

Pediatric NAFLD has distinct and variable pathology, yet causation remains unclear. We have shown that maternal Western-style diet (mWSD) compared with maternal chow diet (CD) consumption in nonhuman primates produces hepatic injury and steatosis in fetal offspring. Here, we define the role of mWSD and postweaning Western-style diet (pwWSD) exposures on molecular mechanisms linked to NAFLD development in a cohort of 3-year-old juvenile nonhuman primates offspring exposed to maternal CD or mWSD followed by CD or Western-style diet after weaning. We used histologic, transcriptomic, and metabolomic analyses to identify hepatic pathways regulating NAFLD. Offspring exposed to mWSD showed increased hepatic periportal collagen deposition but unchanged hepatic triglyceride levels and body weight. mWSD was associated with a downregulation of gene expression pathways underlying HNF4α activity and protein, and downregulation of antioxidant signaling, mitochondrial biogenesis, and PPAR signaling pathways. In offspring exposed to both mWSD and pwWSD, liver RNA profiles showed upregulation of pathways promoting fibrosis and endoplasmic reticulum stress and increased BiP protein expression with pwWSD. pwWSD increased acylcarnitines and decreased anti-inflammatory fatty acids, which was more pronounced when coupled with mWSD exposure. Further, mWSD shifted liver metabolites towards decreased purine catabolism in favor of synthesis, suggesting a mitochondrial DNA repair response. Our findings demonstrate that 3-year-old offspring exposed to mWSD but weaned to a CD have periportal collagen deposition, with transcriptional and metabolic pathways underlying hepatic oxidative stress, compromised mitochondrial lipid sensing, and decreased antioxidant response. Exposure to pwWSD worsens these phenotypes, triggers endoplasmic reticulum stress, and increases fibrosis. Overall, mWSD exposure is associated with altered expression of candidate genes and metabolites related to NAFLD that persist in juvenile offspring preceding clinical presentation of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Dieta Ocidental , Antioxidantes , Fibrose , Fenótipo , Primatas
20.
Stem Cell Reports ; 17(12): 2595-2609, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36332628

RESUMO

Maternal obesity adversely impacts the in utero metabolic environment, but its effect on fetal hematopoiesis remains incompletely understood. During late development, the fetal bone marrow (FBM) becomes the major site where macrophages and B lymphocytes are produced via differentiation of hematopoietic stem and progenitor cells (HSPCs). Here, we analyzed the transcriptional landscape of FBM HSPCs at single-cell resolution in fetal macaques exposed to a maternal high-fat Western-style diet (WSD) or a low-fat control diet. We demonstrate that maternal WSD induces a proinflammatory response in FBM HSPCs and fetal macrophages. In addition, maternal WSD consumption suppresses the expression of B cell development genes and decreases the frequency of FBM B cells. Finally, maternal WSD leads to poor engraftment of fetal HSPCs in nonlethally irradiated immunodeficient NOD/SCID/IL2rγ-/- mice. Collectively, these data demonstrate for the first time that maternal WSD impairs fetal HSPC differentiation and function in a translationally relevant nonhuman primate model.


Assuntos
Dieta Ocidental , Células-Tronco , Feminino , Gravidez , Humanos , Camundongos , Animais , Macaca mulatta , Camundongos Endogâmicos NOD , Camundongos SCID , Dieta Ocidental/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA