Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Small Methods ; : e2301171, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229526

RESUMO

Collagen type I, the main component of the extracellular matrix in vertebrates, is widely used in tissue engineering applications. This is on account that collagen molecules can self-assemble under certain conditions into 3D fibrillar hydrogels. Although there is an extensive body of literature studying collagen self-assembly, there is a lack of systematic understanding on how different experimental factors, such as pH and temperature, and their cumulative effects guide the self-assembly process. In this work, a comprehensive workflow to study the interactive effects of several assembly parameters on the collagen self-assembly process is implemented. This workflow consists of: 1) efficient statistical sampling based on Design of Experiments, 2) high-throughput and automated data collection and 3) automated data analysis. This approach enables to screen several parameters simultaneously and derive a set of mathematical equations that link parameters with the kinetics and morphological aspects of collagen self-assembly, and can be used to design collagen constructs with predefined characteristics.

2.
Food Chem ; 439: 138087, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039606

RESUMO

In a recent letter to the editor Prof Khosravi-Darani responded to our paper ''Unravelling mechanisms of protein and lipid oxidation in mayonnaise at multiple length scales''. In our work, we observed liposomes in the continuous phase of mayonnaise. In the letter the objection was made that liposomes cannot be formed in a non-aqueous phase which, however, was not argued in our publication. As mayonnaise is an oil-in-water (O/W) emulsion and its continuous phase is aqueous, liposomes may be observed in this phase. Therefore, the objection from Prof Khosravi-Darani does not apply to our work.


Assuntos
Lipossomos , Polímeros , Emulsões
3.
J Colloid Interface Sci ; 652(Pt B): 1994-2004, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690307

RESUMO

HYPOTHESIS: The shelf life of multiphase systems, e.g. oil-in-water (O/W) emulsions, is severely limited by physical and/or chemical instabilities, which degrade their texture, macroscopic appearance, sensory and (for edible systems) nutritional quality. One prominent chemical instability is lipid oxidation, which is notoriously complex. The complexity arises from the involvement of many physical structures present at several scales (1-10,000 nm), of which the smallest ones are often overlooked during characterization. EXPERIMENTS: We used cryogenic transmission electron microscopy (cryo-TEM) to characterize the coexisting colloidal structures at the nanoscale (10-200 nm) in rapeseed oil-based model emulsions stabilized by different concentrations of a nonionic surfactant. We assessed whether the oxidative and physical instabilities of the smallest colloidal structures in such emulsions may be different from those of larger colloidal structures. FINDINGS: By deploying cryo-TEM, we analyzed the size of very small oil droplets and of surfactant micelles, which are typically overlooked by dynamic light scattering when larger structures are concomitantly present. Their size and oil content were shown to be stable over incubation, but lipid oxidation products were overrepresented in these very small droplets. These insights highlight the importance of the fraction of "tiny droplets" for the oxidative stability of O/W emulsions.

4.
J Am Chem Soc ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995949

RESUMO

We demonstrate the construction of pH-responsive bicontinuous nanospheres (BCNs) with nonlinear transient permeability and catalytic activity. The BCNs were assembled from amphiphilic block copolymers comprising pH-responsive groups and were loaded with the enzymes urease and horseradish peroxidase (HRP). A transient membrane permeability switch was introduced by employing the well-known pH-increasing effect of urease upon conversion of urea to ammonia. As expected, the coencapsulated HRP displayed a transiently regulated catalytic output profile upon addition of urea, with no significant product formation after the pH increase. This transient process displayed a nonlinear "dampening" behavior, induced by a decrease in membrane permeability as a result of significant local ammonia production. Furthermore, the catalytic output of HRP could be modulated by addition of different amounts of urea or by altering the buffer capacity of the system. Finally, this nonlinear dampening effect was not observed in spherical polymersomes, even though the membrane permeability could also be inhibited by addition of urea. The specific BCN morphology therefore allows to optimally control catalytic processes by pH changes in the nanoreactor microenvironment compared to bulk conditions due to its unique permeability profile.

5.
Food Chem ; 402: 134417, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36303379

RESUMO

In mayonnaise, lipid and protein oxidation are closely related and the interplay between them is critical for understanding the chemical shelf-life stability of mayonnaise. This is in particular the case for comprehending the role of low-density lipoprotein (LDL) particles acting as a main emulsifier. Here, we monitored oxidation and the concomitant aggregation of LDLs by bright-field light microscopy and cryogenic transmission electron microscopy. We further probed the formation of protein radicals and protein oxidation by imaging the accumulation of a water-soluble fluorescent spin trap and protein autofluorescence. The effect of variation of pH and addition of EDTA on the accumulation of the spin trap validated that protein radicals were induced by lipid radicals. Our data suggests two main pathways of oxidative protein radical formation in LDL particles: (1) at the droplet interface, induced by lipid free radicals formed in oil droplets, and (2) in the continuous phase induced by an independent LDL-specific mechanism.


Assuntos
Condimentos , Lipoproteínas LDL , Radicais Livres/metabolismo , Oxirredução , Lipoproteínas LDL/metabolismo , Peroxidação de Lipídeos
6.
Chem Mater ; 34(17): 8031-8042, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36117880

RESUMO

Skin-compatible printed stretchable conductors that combine a low gauge factor with a high durability over many strain cycles are still a great challenge. Here, a graphene nanoplatelet-based colloidal ink utilizing a skin-compatible thermoplastic polyurethane (TPU) binder with adjustable rheology is developed. Stretchable conductors that remain conductive even under 100% strain and demonstrate high fatigue resistance to cyclic strains of 20-50% are realized via printing on TPU. The sheet resistances of these conductors after drying at 120 °C are as low as 34 Ω â–¡-1 mil-1. Furthermore, photonic annealing at several energy levels is used to decrease the sheet resistance to <10 Ω â–¡-1 mil-1, with stretchability and fatigue resistance being preserved and tunable. The high conductivity, stretchability, and cyclic stability of printed tracks having excellent feature definition in combination with scalable ink production and adjustable rheology bring the high-volume manufacturing of stretchable wearables into scope.

7.
Mater Horiz ; 9(10): 2572-2580, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35894556

RESUMO

Control over the assembly and morphology of nanoscale functional building blocks is of great importance to hybrid and porous nanomaterials. In this paper, by combining different types of spherical nanoparticles with different size ratios in a hierarchical assembly process which allows us to control the final structure of multi-component assemblies, we discuss self-assembly of an extensive range of supraparticles, labelled as AB particles, and an extension to novel ternary particles, labelled as ABC particles. For supraparticles, the organization of small nanoparticles is known to be inherently related to the size ratio of building blocks. Therefore, we studied the formation of supraparticles prepared by colloidal self-assembly using small silica nanoparticles (SiO2 NPs) attached on the surface of large polystyrene latex nanoparticles (PSL NPs) with a wide size ratio range for complete and partial coverage, by controlling the electrostatic interactions between the organic and inorganic nanoparticles and their concentrations. In this way hierarchically ordered, stable supraparticles, either fully covered or partially covered, were realized. The partially covered, stable AB supraparticles offer the option to create ABC supraparticles of which the fully covered shell contains two different types of nanoparticles. This has been experimentally confirmed using iron oxide (Fe3O4) nanoparticles together with silica nanoparticles as shell particles on polystyrene core particles. Cryo-electron tomography was used to visualize the AB binary and ABC ternary supraparticles and to determine the three-dimensional structural characteristics of supraparticles formed under different conditions.


Assuntos
Nanopartículas , Nanoestruturas , Nanopartículas/química , Poliestirenos , Porosidade , Dióxido de Silício/química
8.
J Colloid Interface Sci ; 627: 827-837, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35901562

RESUMO

HYPOTHESIS: Core-corona supracolloids can be assembled in aqueous dispersions by controlling the physical interactions between the corona and core colloidal particles. A raspberry corona configuration with full surface coverage of the core can be reached by inducing strong attractive interactions between the individual particles. A controlled partial surface coverage of the core, i.e. strawberry configuration, is however, more difficult to achieve. Supracolloids with different surface coverage ratio exhibit unique and multifunctional surface properties. EXPERIMENTS: By counterbalancing the multiple physical interactions playing a role during the assembly, the configuration and stability of the assemblies could be fine-tuned over a wide range of concentrations. Supracolloids consisting of polyethylene glycol (PEO)-grafted polymer particles covered by silica nanoparticles were assembled with different configurations, by adjusting the pH and ionic strength of the dispersion, the PEO grafting density and the particles concentration. The self-assembly process and resulting configurations were monitored via cryogenic transmission electron microscopy (Cryo-TEM) and light scattering. FINDINGS: The suitable conditions to assemble supracolloids with partial corona coverage have been established. Stable strawberry supracolloids could be prepared, both for diluted (1 wt%) and concentrated (12 wt%) dispersions. These hybrid supracolloids with well-defined configuration are highly relevant to developing advanced water-borne paints and inks, food dispersions, cosmetic and healthcare products.


Assuntos
Fragaria , Polietilenoglicóis/química , Polímeros/química , Dióxido de Silício/química , Água/química
9.
Nanomaterials (Basel) ; 12(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35564259

RESUMO

Investigating and understanding the intrinsic material properties of biogenic materials, which have evolved over millions of years into admirable structures with difficult to mimic hierarchical levels, holds the potential of replacing trial-and-error-based materials optimization in our efforts to make synthetic materials of similarly advanced complexity and properties. An excellent example is biogenic silica which is found in the exoskeleton of unicellular photosynthetic algae termed diatoms. Because of the complex micro- and nanostructures found in their exoskeleton, determining the intrinsic mechanical properties of biosilica in diatoms has only partly been accomplished. Here, a general method is presented in which a combination of in situ deformation tests inside an SEM with a realistic 3D model of the frustule of diatom Craspedostauros sp. (C. sp.) obtained by electron tomography, alongside finite element method (FEM) simulations, enables quantification of the Young's modulus (E = 2.3 ± 0.1 GPa) of this biogenic hierarchical silica. The workflow presented can be readily extended to other diatom species, biominerals, or even synthetic hierarchical materials.

11.
CrystEngComm ; 24(6): 1211-1217, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35221796

RESUMO

The mineralization of collagen in vitro has been extensively investigated for hydroxyapatite, silica, calcium carbonate and lepidocrocite (γ-FeOOH). Henceforth, it is interesting to investigate whether collagen also could serve as a generic mineralization template for other minerals, like magnetite. To this end, and inspired by the partial oxidation approach, first a ferrous hydroxide (Fe(OH)2) intermediate is synthesized via the titration of base to a solution of Fe2+. Subsequently, the Fe(OH)2 is mixed with collagen fibrils and poly(aspartic acid) is added to promote the formation of intrafibrillar crystals. Platelet-shaped lepidocrocite crystals being present throughout the entire thickness of the collagen fibrils can be realized, as was confirmed with electron tomography. The formation of lepidocrocite, which is an Fe3+ compound, is hypothesized to be induced via oxidation of the Fe2+ species and, therefore, the oxygen concentration during titration, TEM sample preparation and drying of TEM samples are investigated. Although the reaction is sensitive to small changes in experimental conditions, highly mineralized collagen fibers can be realized.

12.
Microsc Res Tech ; 85(1): 412-417, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34448512

RESUMO

Transmission electron microscopy (TEM) is an important analysis technique to visualize (bio)macromolecules and their assemblies, including collagen fibers. Many protocols for TEM sample preparation of collagen involve one or more washing steps to remove excess salts from the dispersion that could hamper analysis when dried on a TEM grid. Such protocols are not standardized and washing times as well as washing solvents vary from procedure to procedure, with each research group typically having their own protocol. Here, we investigate the influence of washing with water, ethanol, but also methanol and 2-propanol, for both mineralized and unmineralized collagen samples via a protocol based on centrifugation. Washing with water maintains the hydrated collagen structure and the characteristic banding pattern can be clearly observed. Conversely, washing with ethanol results in dehydration of the fibrils, often leading to aggregation of the fibers and a less obvious banding pattern, already within 1 min of ethanol exposure. As we show, this process is fully reversible. Similar observations were made for methanol and propanol. Based on these results, a standardized washing protocol for collagenous samples is proposed.


Assuntos
Colágeno , Microscopia Eletrônica de Transmissão
13.
Microsc Res Tech ; 85(2): 469-486, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34490967

RESUMO

Bone is a complex natural material with a complex hierarchical multiscale organization, crucial to perform its functions. Ultrastructural analysis of bone is crucial for our understanding of cell to cell communication, the healthy or pathological composition of bone tissue, and its three-dimensional (3D) organization. A variety of techniques has been used to analyze bone tissue. This article describes a combined approach of optical, scanning electron, and transmission electron microscopy for the ultrastructural analysis of bone from the nanoscale to the macroscale, as illustrated by two pathological bone tissues. By following a top-down approach to investigate the multiscale organization of pathological bones, quantitative estimates were made in terms of calcium content, nearest neighbor distances of osteocytes, canaliculi diameter, ordering, and D-spacing of the collagen fibrils, and the orientation of intrafibrillar minerals which enable us to observe the fine structural details. We identify and discuss a series of two-dimensional (2D) and 3D imaging techniques that can be used to characterize bone tissue. By doing so we demonstrate that, while 2D imaging techniques provide comparable information from pathological bone tissues, significantly different structural details are observed upon analyzing the pathological bone tissues in 3D. Finally, particular attention is paid to sample preparation for and quantitative processing of data from electron microscopic analysis.


Assuntos
Osso e Ossos , Imageamento Tridimensional , Elétrons , Microscopia Eletrônica de Transmissão
14.
Small Methods ; 5(6): e2001287, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34927906

RESUMO

Liquid-Phase (Scanning) Transmission Electron Microscopy (LP-(S)TEM) has become an essential technique to monitor nanoscale materials processes in liquids in real-time. Due to the pressure difference between the liquid and the microscope vacuum, bending of the silicon nitride (SiNx ) membrane windows generally occurs. This causes a spatially varying liquid layer thickness that makes interpretation of LP-(S)TEM results difficult due to a locally varying achievable resolution and diffusion limitations. To mediate these difficulties, it is shown: 1) how to quantitatively map liquid layer thickness for any liquid at less than 0.01 e- Å-2 total dose; 2) how to dynamically modulate the liquid thickness by tuning the internal pressure in the liquid cell, co-determined by the Laplace pressure and the external pressure. It is demonstrated that reproducible inward bulging of the window membranes can be realized, leading to an ultra-thin liquid layer in the central window area for high-resolution imaging. Furthermore, it is shown that the liquid thickness can be dynamically altered in a programmed way, thereby potentially overcoming the diffusion limitations towards achieving bulk solution conditions. The presented approaches provide essential ways to measure and dynamically adjust liquid thickness in LP-(S)TEM experiments, enabling new experiment designs and better control of solution chemistry.

15.
Small Methods ; 5(12): e2100638, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928031

RESUMO

Biocomposite structures are difficult to characterize by bulk approaches due to their morphological complexity and compositional heterogeneity. Therefore, a versatile method is required to assess, for example, the mechanical properties of geometrically simple parts of biocomposites at the relevant length scales. Here, it is demonstrated how a combination of Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and micromanipulators can be used to isolate, transfer, and determine the mechanical properties of frustule constituents of diatom Thalassiosira pseudonana (T.p.). Specifically, two parts of the diatom frustule, girdle bands and valves, are separated by FIB milling and manipulated using a sharp tungsten tip without compromising their physical or chemical integrity. In situ mechanical studies on isolated girdle bands combined with Finite Element Method (FEM) simulations, enables the quantitative assessment of the Young's modulus of this biosilica; E = 40.0 GPa. In addition, the mechanical strength of isolated valves could be measured by transferring and mounting them on top of premilled holes in the sample support. This approach may be extended to any hierarchical biocomposite material, regardless of its chemical composition, to isolate, transfer, and investigate the mechanical properties of selected constituents or specific regions.


Assuntos
Diatomáceas/ultraestrutura , Microtecnologia/instrumentação , Fenômenos Biomecânicos , Módulo de Elasticidade , Análise de Elementos Finitos , Microscopia Eletrônica de Varredura , Nanoestruturas , Espectrometria por Raios X
16.
CrystEngComm ; 23(18): 3340-3348, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-34093087

RESUMO

Hexamethylenetetramine (HMTA) is commonly used as a base releasing agent for the synthesis of ZnO under mild aqueous conditions. HMTA hydrolysis leads to gradual formation of a base during the reaction. Use of HMTA, however, does have limitations: HMTA hydrolysis yields both formaldehyde and ammonia, it provides no direct control over the ammonia addition rate or the total amount of ammonia added during the reaction, it results in a limited applicable pH range and it dictates the accessible reaction temperatures. To overcome these restrictions, this work presents a direct base titration strategy for ZnO synthesis in which a continuous base addition rate is maintained. Using this highly flexible strategy, wurtzite ZnO can be synthesized at a pH >5.5 using either KOH or ammonia as a base source at various addition rates and reaction pH values. In situ pH measurements suggest a similar reaction mechanism to HMTA-based synthesis, independent of the varied conditions. The type and concentration of the base used for titration affect the reaction product, with ammonia showing evidence of capping behaviour. Optimizing this strategy, we are able to influence and direct the crystal shape and significantly increase the product yield to 74% compared to the ∼13% obtained by the reference HMTA reaction.

17.
ACS Biomater Sci Eng ; 7(7): 3123-3131, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34161069

RESUMO

The mineralization of collagen via synthetic procedures has been extensively investigated for hydroxyapatite as well as for silica and calcium carbonate. From a fundamental point of view, it is interesting to investigate whether collagen could serve as a generic mineralization template for other minerals, like iron oxides. Here, bio-inspired coprecipitation reaction, generally leading to the formation of magnetite, is used to mineralize collagen with iron hydroxides. Platelet-shaped green rust crystals form outside the collagen matrix, while inside the collagen, nanoparticles with a size of 2.6 nm are formed, which are hypothesized to be iron (III) hydroxide. Mineralization with nanoparticles inside the collagen solely occurs in the presence of poly(aspartic acid) (pAsp). In the absence of pAsp, magnetite particles are formed around the collagen. Time-resolved cryo-TEM shows that during the coprecipitation reaction, initially a beam-sensitive phase is formed, possibly an Fe3+-pAsp complex. This beam-sensitive phase transforms into nanoparticles. In a later stage, sheet-like crystals are also found. After 48 h of mineralization, ordering of the nanoparticles around one of the collagen sub-bands (the a-band) is observed. This is very similar to the collagen-hydroxyapatite system, indicating that mineralization with iron hydroxides inside collagen is possible and proceeds via a similar mechanism as hydroxyapatite mineralization.


Assuntos
Hidróxidos , Ferro , Colágeno , Durapatita , Óxido Ferroso-Férrico
18.
ACS Nano ; 15(6): 10296-10308, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34077193

RESUMO

Electron microscopy (EM) of materials undergoing chemical reactions provides knowledge of the underlying mechanisms. However, the mechanisms are often complex and cannot be fully resolved using a single method. Here, we present a distributed electron microscopy method for studying complex reactions. The method combines information from multiple stages of the reaction and from multiple EM methods, including liquid phase EM (LP-EM), cryogenic EM (cryo-EM), and cryo-electron tomography (cryo-ET). We demonstrate this method by studying the desilication mechanism of zeolite crystals. Collectively, our data reveal that the reaction proceeds via a two-step anisotropic etching process and that the defects in curved surfaces and between the subunits in the crystal control the desilication kinetics by directing mass transport.


Assuntos
Tomografia com Microscopia Eletrônica , Microscopia Crioeletrônica
19.
Nat Commun ; 12(1): 2077, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824321

RESUMO

Aggregation-induced emission (AIE) has, since its discovery, become a valuable tool in the field of nanoscience. AIEgenic molecules, which display highly stable fluorescence in an assembled state, have applications in various biomedical fields-including photodynamic therapy. Engineering structure-inherent, AIEgenic nanomaterials with motile properties is, however, still an unexplored frontier in the evolution of this potent technology. Here, we present phototactic/phototherapeutic nanomotors where biodegradable block copolymers decorated with AIE motifs can transduce radiant energy into motion and enhance thermophoretic motility driven by an asymmetric Au nanoshell. The hybrid nanomotors can harness two photon near-infrared radiation, triggering autonomous propulsion and simultaneous phototherapeutic generation of reactive oxygen species. The potential of these nanomotors to be applied in photodynamic therapy is demonstrated in vitro, where near-infrared light directed motion and reactive oxygen species induction synergistically enhance efficacy with a high level of spatial control.


Assuntos
Luz , Nanopartículas/química , Fototerapia , Linhagem Celular Tumoral , Ouro/química , Células HeLa , Humanos , Movimento (Física) , Nanopartículas/ultraestrutura , Polímeros/química
20.
Sci Adv ; 7(10)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33674313

RESUMO

Immunotherapies controlling the adaptive immune system are firmly established, but regulating the innate immune system remains much less explored. The intrinsic interactions between nanoparticles and phagocytic myeloid cells make these materials especially suited for engaging the innate immune system. However, developing nanotherapeutics is an elaborate process. Here, we demonstrate a modular approach that facilitates efficiently incorporating a broad variety of drugs in a nanobiologic platform. Using a microfluidic formulation strategy, we produced apolipoprotein A1-based nanobiologics with favorable innate immune system-engaging properties as evaluated by in vivo screening. Subsequently, rapamycin and three small-molecule inhibitors were derivatized with lipophilic promoieties, ensuring their seamless incorporation and efficient retention in nanobiologics. A short regimen of intravenously administered rapamycin-loaded nanobiologics (mTORi-NBs) significantly prolonged allograft survival in a heart transplantation mouse model. Last, we studied mTORi-NB biodistribution in nonhuman primates by PET/MR imaging and evaluated its safety, paving the way for clinical translation.


Assuntos
Sistema Imunitário , Nanopartículas , Animais , Imunoterapia , Camundongos , Sirolimo/farmacologia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA