Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Adv Mater ; : e2401955, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613435

RESUMO

Unimolecular current rectifiers are fundamental building blocks in organic electronics. Rectifying behavior has been identified in numerous organic systems due to electron-hole asymmetries of orbital levels interfaced by a metal electrode. As a consequence, the rectifying ratio (RR) determining the diode efficiency remains fixed for a chosen molecule-metal interface. Here, a mechanically tunable molecular diode exhibiting an exceptionally large rectification ratio (>105) and reversible direction is presented. The molecular system comprises a seven-armchair graphene nanoribbon (GNR) doped with a single unit of substitutional diboron within its structure, synthesized with atomic precision on a gold substrate by on-surface synthesis. The diboron unit creates half-populated in-gap bound states and splits the GNR frontier bands into two segments, localizing the bound state in a double barrier configuration. By suspending these GNRs freely between the tip of a low-temperature scanning tunneling microscope and the substrate, unipolar hole transport is demonstrated through the boron in-gap state's resonance. Strong current rectification is observed, associated with the varying widths of the two barriers, which can be tuned by altering the distance between tip and substrate. This study introduces an innovative approach for the precise manipulation of molecular electronic functionalities, opening new avenues for advanced applications in organic electronics.

2.
Cell Rep ; 43(2): 113757, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354088

RESUMO

Understanding the mechanisms underlying cytotoxic immunoglobulin G (IgG) activity is critical for improving therapeutic antibody activity and inhibiting autoantibody-mediated tissue pathology. While prior research highlights the important role of the mononuclear phagocytic system for removing opsonized target cells, it remains unclear which monocyte or macrophage subsets stemming from fetal or post-natal bone-marrow (BM)-associated definitive hematopoiesis are involved in target cell depletion. By using a titrated irradiation approach as well as Kupffer-cell-specific deletion of activated Fcγ receptor signaling, we establish conditions under which the contribution of BM-derived monocytes versus yolk-sac-derived liver-resident macrophages to cytotoxic IgG activity can be studied. Our results demonstrate that liver-resident macrophages originating from either fetal or adult hematopoiesis play a central role in IgG-mediated depletion of opsonized target cells from the peripheral blood under steady-state conditions, highlighting the impact of the tissue niche and not macrophage origin for cytotoxic antibody activity.


Assuntos
Medula Óssea , Imunoglobulina G , Adulto , Humanos , Feto , Macrófagos , Monócitos
3.
J Phys Chem Lett ; 14(50): 11506-11512, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38088859

RESUMO

Organic diradicals are envisioned as elementary building blocks for designing a new generation of spintronic devices and have been used in constructing prototypical field effect transistors and nonlinear optical devices. Open-shell systems, however, are also reactive, thus requiring design strategies to "protect" their radical character from the environment, especially when they are embedded in solid-state devices. Here, we report the persistence on a metallic surface of the diradical character of a diindeno[b,i]anthracene (DIAn) core protected by bulky end-groups. Our scanning tunneling spectroscopy measurements on single-molecules detected singlet-triplet excitations that were absent for DIAn species packed in assembled structures. Density functional theory simulations unravel that the molecular geometry on the metal substrate can crucially modify the value of the singlet-triplet gap via the delocalization of the radical sites. The persistence of the diradical character over metallic substrates is a promising finding for integrating radical-based materials into functional devices.

4.
Angew Chem Int Ed Engl ; 62(41): e202307884, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604782

RESUMO

Triangulenes are a class of open-shell triangular graphene flakes with total spin increasing with their size. In the last years, on-surface-synthesis strategies have permitted fabricating and engineering triangulenes of various sizes and structures with atomic precision. However, direct proof of the increasing total spin with their size remains elusive. In this work, we report the combined in-solution and on-surface synthesis of a large nitrogen-doped triangulene (aza-[5]-triangulene) on a Au(111) surface, and the detection of its high-spin ground state. Bond-resolved scanning tunneling microscopy images uncovered radical states distributed along the zigzag edges, which were detected as weak zero-bias resonances in scanning tunneling spectra. These spectral features reveal the partial Kondo screening of a high-spin state. Through a combination of several simulation tools, we find that the observed distribution of radical states is explained by a quintet ground state (S=2), instead of the quartet state (S=3/2) expected for the neutral species. This confirms that electron transfer to the metal substrate raises the spin of the ground state. We further provide a qualitative description of the change of (anti)aromaticity introduced by N-substitution, and its role in the charge stabilization on a surface, resulting in an S=2 aza-triangulene on Au(111).

5.
ACS Nano ; 16(9): 14819-14826, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36037149

RESUMO

Spin-hosting graphene nanostructures are promising metal-free systems for elementary quantum spintronic devices. Conventionally, spins are protected from quenching by electronic band gaps, which also hinder electronic access to their quantum state. Here, we present a narrow graphene nanoribbon substitutionally doped with boron heteroatoms that combines a metallic character with the presence of localized spin 1/2 states in its interior. The ribbon was fabricated by on-surface synthesis on a Au(111) substrate. Transport measurements through ribbons suspended between the tip and the sample of a scanning tunneling microscope revealed their ballistic behavior, characteristic of metallic nanowires. Conductance spectra show fingerprints of localized spin states in the form of Kondo resonances and inelastic tunneling excitations. Density functional theory rationalizes the metallic character of the graphene nanoribbon due to the partial depopulation of the valence band induced by the boron atoms. The transferred charge builds localized magnetic moments around the boron atoms. The orthogonal symmetry of the spin-hosting state's and the valence band's wave functions protects them from mixing, maintaining the spin states localized. The combination of ballistic transport and spin localization into a single graphene nanoribbon offers the perspective of electronically addressing and controlling carbon spins in real device architectures.

6.
J Am Chem Soc ; 144(10): 4522-4529, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254059

RESUMO

Nitrogen heteroatom doping into a triangulene molecule allows tuning its magnetic state. However, the synthesis of the nitrogen-doped triangulene (aza-triangulene) has been challenging. Herein, we report the successful synthesis of aza-triangulene on the Au(111) and Ag(111) surfaces, along with their characterizations by scanning tunneling microscopy and spectroscopy in combination with density functional theory (DFT) calculations. Aza-triangulenes were obtained by reducing ketone-substituted precursors. Exposure to atomic hydrogen followed by thermal annealing and, when necessary, manipulations with the scanning probe afforded the target product. We demonstrate that on Au(111), aza-triangulene donates an electron to the substrate and exhibits an open-shell triplet ground state. This is derived from the different Kondo resonances of the final aza-triangulene product and a series of intermediates on Au(111). Experimentally mapped molecular orbitals match with DFT-calculated counterparts for a positively charged aza-triangulene. In contrast, aza-triangulene on Ag(111) receives an extra electron from the substrate and displays a closed-shell character. Our study reveals the electronic properties of aza-triangulene on different metal surfaces and offers an approach for the fabrication of new hydrocarbon structures, including reactive open-shell molecules.


Assuntos
Eletrônica , Ouro , Elétrons , Ouro/química , Nitrogênio/química , Propriedades de Superfície
7.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830050

RESUMO

Many of the effector functions of antibodies rely on the binding of antibodies/immune complexes to cellular Fcγ receptors (FcγRs). Since the majority of innate immune effector cells express both activating and inhibitory Fc receptors, the outcome of the binding of immune complexes to cells of a given population is influenced by the relative affinities of the respective IgG subclasses to these receptors, as well as by the numbers of activating and inhibitory FcγRs on the cell surface. A group of immune cells that has come into focus more recently is the various subsets of tissue-resident macrophages. The central functions of FcγRs on tissue macrophages include the clearance of opsonized pathogens, the removal of small immune complexes from the circulation and the depletion of antibody-opsonized cells in the therapy of autoimmunity and cancer. Despite these essential functions of FcγRs on tissue-resident macrophages, an in-depth quantification of FcγRs is lacking. Thus, the aim of our current study was to quantify the various Fcγ receptors on macrophages in murine liver, lung, kidney, brain, skin and spleen. Our study identified a pronounced heterogeneity between FcγR expression patterns of the different tissue macrophages, which may reflect their specialized functions within their unique niches in different organ environments.


Assuntos
Macrófagos/imunologia , Macrófagos/metabolismo , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Animais , Biomarcadores/metabolismo , Feminino , Rim/imunologia , Rim/metabolismo , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Microglia/imunologia , Microglia/metabolismo , Receptores de IgG/análise , Pele/imunologia , Pele/metabolismo , Baço/imunologia , Baço/metabolismo
8.
Angew Chem Int Ed Engl ; 60(48): 25224-25229, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34647398

RESUMO

Triangulene nanographenes are open-shell molecules with predicted high spin state due to the frustration of their conjugated network. Their long-sought synthesis became recently possible over a metal surface. Here, we present a macrocycle formed by six [3]triangulenes, which was obtained by combining the solution synthesis of a dimethylphenyl-anthracene cyclic hexamer and the on-surface cyclodehydrogenation of this precursor over a gold substrate. The resulting triangulene nanostar exhibits a collective spin state generated by the interaction of its 12 unpaired π-electrons along the conjugated lattice, corresponding to the antiferromagnetic ordering of six S=1 sites (one per triangulene unit). Inelastic electron tunneling spectroscopy resolved three spin excitations connecting the singlet ground state with triplet states. The nanostar behaves close to predictions from the Heisenberg model of an S=1 spin ring, representing a unique system to test collective spin modes in cyclic systems.

9.
ACS Nano ; 15(9): 14985-14995, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34491033

RESUMO

Metal halides are a class of layered materials with promising electronic and magnetic properties persisting down to the two-dimensional limit. While most recent studies focused on the trihalide components of this family, the rather unexplored metal dihalides are also van der Waals layered systems with distinctive magnetic properties. Here we show that the dihalide NiBr2 grows epitaxially on a Au(111) substrate and exhibits semiconducting and magnetic behavior starting from a single layer. Through a combination of a low-temperature scanning-tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy, and photoemission electron microscopy, we identify two competing layer structures of NiBr2 coexisting at the interface and a stoichiometrically pure layer-by-layer growth beyond. Interestingly, X-ray absorption spectroscopy measurements revealed a magnetically ordered state below 27 K with in-plane magnetic anisotropy and zero-remanence in the single layer of NiBr2/Au(111), which we attribute to a noncollinear magnetic structure. The combination of such two-dimensional magnetic order with the semiconducting behavior down to the 2D limit offers the attractive perspective of using these films as ultrathin crystalline barriers in tunneling junctions and low-dimensional devices.

10.
Phys Rev Lett ; 125(14): 146801, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064521

RESUMO

Graphene nanoribbons (GNRs), low-dimensional platforms for carbon-based electronics, show the promising perspective to also incorporate spin polarization in their conjugated electron system. However, magnetism in GNRs is generally associated with localized states around zigzag edges, difficult to fabricate and with high reactivity. Here we demonstrate that magnetism can also be induced away from physical GNR zigzag edges through atomically precise engineering topological defects in its interior. A pair of substitutional boron atoms inserted in the carbon backbone breaks the conjugation of their topological bands and builds two spin-polarized boundary states around them. The spin state was detected in electrical transport measurements through boron-substituted GNRs suspended between the tip and the sample of a scanning tunneling microscope. First-principle simulations find that boron pairs induce a spin 1, which is modified by tuning the spacing between pairs. Our results demonstrate a route to embed spin chains in GNRs, turning them into basic elements of spintronic devices.

11.
Phys Rev Lett ; 124(17): 177201, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412280

RESUMO

Graphene can develop large magnetic moments in custom-crafted open-shell nanostructures such as triangulene, a triangular piece of graphene with zigzag edges. Current methods of engineering graphene nanosystems on surfaces succeeded in producing atomically precise open-shell structures, but demonstration of their net spin remains elusive to date. Here, we fabricate triangulenelike graphene systems and demonstrate that they possess a spin S=1 ground state. Scanning tunneling spectroscopy identifies the fingerprint of an underscreened S=1 Kondo state on these flakes at low temperatures, signaling the dominant ferromagnetic interactions between two spins. Combined with simulations based on the meanfield Hubbard model, we show that this S=1 π paramagnetism is robust and can be turned into an S=1/2 state by additional H atoms attached to the radical sites. Our results demonstrate that π paramagnetism of high-spin graphene flakes can survive on surfaces, opening the door to study the quantum behavior of interacting π spins in graphene systems.

12.
J Acoust Soc Am ; 147(3): 1491, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32237831

RESUMO

Noise mitigation of stage machinery can be quite demanding and requires innovative solutions. In this work, an acoustic metamaterial capsule is proposed to reduce the noise emission of several stage machinery drive trains, while still allowing the ventilation required for cooling. The metamaterial capsule consists of c-shape meta-atoms, which have a simple structure that facilitates manufacturing. Two different metamaterial capsules are designed, simulated, manufactured, and experimentally validated that utilize an ultra-sparse and air-permeable reflective meta-grating. Both designs demonstrate transmission loss peaks that effectively suppress gear mesh noise or other narrow band noise sources. The ventilation by natural convection was numerically verified, and was shown to give adequate cooling, whereas a conventional sound capsule would lead to overheating. The noise spectra of three common stage machinery drive trains are numerically modelled, enabling one to design meta-gratings and determine their noise suppression performance. The results fulfill the stringent stage machinery noise limits, highlighting the benefit of using metamaterial capsules of simple c-shape structure.

13.
ACS Nano ; 13(9): 9936-9943, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31381315

RESUMO

Controlling the spin of metal atoms embedded in molecular systems is a key step toward the realization of molecular electronics and spintronics. Many efforts have been devoted to explore the influencing factors dictating the survival or quenching of a magnetic moment in a metal-organic molecule, and among others, the spin control by axial ligand attachments is the most promising. Herein, from the interplay of high-resolution scanning tunneling microscopy imaging/manipulation and scanning tunneling spectroscopy measurements together with density functional theory calculations, we successfully demonstrate that a Ni trimer within a metal-organic motif acquires a net spin promoted by the adsorption of an on-top Br atom. The spin localization in the trimetal centers bonded to Br was monitored via the Kondo effect. The removal of the Br ligand resulted in the switch from a Kondo ON to a Kondo OFF state. The magnetic state induced by the Br ligand is theoretically attributed to the enhanced Br 4pz and Ni 3dz2 states due to the charge redistribution. The manipulation strategy reported here provides the possibility to explore potential applications of spin-tunable structures in spintronic devices.

14.
Nat Mater ; 18(8): 853-859, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31182779

RESUMO

Because materials consist of positive nuclei and negative electrons, electric potentials are omnipresent at the atomic scale. However, due to the long range of the Coulomb interaction, large-scale structures completely outshine small ones. This makes the isolation and quantification of the electric potentials that originate from nanoscale objects such as atoms or molecules very challenging. Here we report a non-contact scanning probe technique that addresses this challenge. It exploits a quantum dot sensor and the joint electrostatic screening by tip and surface, thus enabling quantitative surface potential imaging across all relevant length scales down to single atoms. We apply the technique to the characterization of a nanostructured surface, thereby extracting workfunction changes and dipole moments for important reference systems. This authenticates the method as a versatile tool to study the building blocks of materials and devices down to the atomic scale.

15.
Nano Lett ; 19(5): 3288-3294, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30964303

RESUMO

We report on the fabrication and transport characterization of atomically precise single-molecule devices consisting of a magnetic porphyrin covalently wired by graphene nanoribbon electrodes. The tip of a scanning tunneling microscope was utilized to contact the end of a GNR-porphyrin-GNR hybrid system and create a molecular bridge between the tip and sample for transport measurements. Electrons tunneling through the suspended molecular heterostructure excited the spin multiplet of the magnetic porphyrin. The detachment of certain spin centers from the surface shifted their spin-carrying orbitals away from an on-surface mixed-valence configuration, recovering its original spin state. The existence of spin-polarized resonances in the free-standing systems and their electrical addressability is the fundamental step in the utilization of carbon-based materials as functional molecular spintronics systems.

16.
Nature ; 558(7711): 573-576, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29950622

RESUMO

Scanning probe microscopy makes it possible to image and spectroscopically characterize nanoscale objects, and to manipulate1-3 and excite4-8 them; even time-resolved experiments are now routinely achieved9,10. This combination of capabilities has enabled proof-of-principle demonstrations of nanoscale devices, including logic operations based on molecular cascades 11 , a single-atom transistor 12 , a single-atom magnetic memory cell 13 and a kilobyte atomic memory 14 . However, a key challenge is fabricating device structures that can overcome their attraction to the underlying surface and thus protrude from the two-dimensional flatlands of the surface. Here we demonstrate the fabrication of such a structure: we use the tip of a scanning probe microscope to lift a large planar aromatic molecule (3,4,9,10-perylenetetracarboxylic-dianhydride) into an upright, standing geometry on a pedestal of two metal (silver) adatoms. This atypical and surprisingly stable upright orientation of the single molecule, which under all known circumstances adsorbs flat on metals15,16, enables the system to function as a coherent single-electron field emitter. We anticipate that other metastable adsorbate configurations might also be accessible, thereby opening up the third dimension for the design of functional nanostructures on surfaces.

17.
Phys Rev Lett ; 120(20): 206801, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864317

RESUMO

We present a physically intuitive model of molecular quantum dots beyond the constant interaction approximation. It accurately describes their charging behavior and allows the extraction of important molecular properties that are otherwise experimentally inaccessible. The model is applied to data recorded with a noncontact atomic force microscope on three different molecules that act as a quantum dot when attached to the microscope tip. The results are in excellent agreement with first-principles simulations.

18.
J Occup Health Psychol ; 21(1): 105-18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26236956

RESUMO

The opportunity to work at any time and place, which is facilitated by mobile communication technologies, reinforces employer expectations that employees are available for work beyond regular work hours. This study investigates the relation of daily extended work availability with psychological and physiological well-being and the mediating role of recovery experiences. We hypothesized that recovery is limited under conditions of extended work availability, which may impair well-being. A sample of 132 individuals from 13 organizations provided daily survey measures over a period of 4 days during which they were required to be available during nonworking hours and 4 days during which they were not required to be available. A subsample of 51 persons provided morning cortisol levels in addition to the survey data. The analysis of within-person processes using multilevel structural equation modeling revealed significant effects of extended work availability on the daily start-of-day mood and cortisol awakening response. Mediation analysis revealed that the recovery experience of control over off-job activities mediated the observed relationship with start-of-day mood but not the relationship with the cortisol awakening response. The results demonstrate that nonwork hours during which employees are required to remain available for work cannot be considered leisure time because employees' control over their activities is constrained and their recovery from work is restricted.


Assuntos
Afeto , Hidrocortisona/análise , Tolerância ao Trabalho Programado/fisiologia , Tolerância ao Trabalho Programado/psicologia , Relações Familiares , Humanos , Estudos Longitudinais , Modelos Teóricos , Saliva/química , Inquéritos e Questionários
19.
J Occup Health Psychol ; 19(2): 217-230, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24635734

RESUMO

The present study reports the lagged effects of work stress on work-related rumination, restful sleep, and nocturnal heart rate variability experienced during both workdays and weekends. Fifty employees participated in a diary study. Multilevel and regression analyses revealed a significant relationship between work stress measured at the end of a workday, work-related rumination measured during the evening, and restful sleep measured the following morning. Work stress, measured as the mean of 2 consecutive workdays, was substantially but not significantly related to restful sleep on weekends. Work stress was unrelated to nocturnal heart rate variability. Work-related rumination was related to restful sleep on weekends but not on workdays. Additionally, work-related rumination on weekends was positively related to nocturnal heart rate variability during the night between Saturday and Sunday. No mediation effects of work stress on restful sleep or nocturnal heart rate variability via work-related rumination were confirmed.


Assuntos
Frequência Cardíaca/fisiologia , Sono , Estresse Psicológico , Pensamento , Trabalho/psicologia , Adulto , Feminino , Humanos , Atividades de Lazer , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Trabalho/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA