Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 34(38): e2205015, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35924776

RESUMO

Wavelength-discriminating systems typically consist of heavy benchtop-based instruments, comprising diffractive optics, moving parts, and adjacent detectors. For simple wavelength measurements, such as lab-on-chip light source calibration or laser wavelength tracking, which do not require polychromatic analysis and cannot handle bulky spectroscopy instruments, lightweight, easy-to-process, and flexible single-pixel devices are attracting increasing attention. Here, a device is proposed for monotonously transforming wavelength information into the time domain with room-temperature phosphorescence at the heart of its functionality, which demonstrates a resolution down to 1 nm and below. It is solution-processed from a single host-guest system comprising organic room-temperature phosphors and colloidal quantum dots. The share of excited triplet states within the photoluminescent layer is dependent on the excitation wavelength and determines the afterglow intensity of the film, which is tracked by a simple photodetector. Finally, an all-organic thin-film wavelength sensor and two applications are demonstrated where this novel measurement concept successfully replaces a full spectrometer.

2.
Adv Mater ; 33(39): e2101844, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34365677

RESUMO

Persistent luminescence from triplet excitons in organic molecules is rare, as fast non-radiative deactivation typically dominates over radiative transitions. This work demonstrates that the substitution of a hydrogen atom in a derivative of phenanthroimidazole with an N-phenyl ring can substantially stabilize the excited state. This stabilization converts an organic material without phosphorescence emission into a molecular system exhibiting efficient and ultralong afterglow phosphorescence at room temperature. Results from systematic photophysical investigations, kinetic modeling, excited-state dynamic modeling, and single-crystal structure analysis identify that the long-lived triplets originate from a reduction of intrinsic non-radiative molecular relaxations. Further modification of the N-phenyl ring with halogen atoms affects the afterglow lifetime and quantum yield. As a proof-of-concept, an anticounterfeiting device is demonstrated with a time-dependent Morse code feature for data encryption based on these emitters. A fundamental design principle is outlined to achieve long-lived and emissive triplet states by suppressing intrinsic non-radiative relaxations in the form of molecular vibrations or rotations.

3.
ACS Omega ; 6(20): 13087-13093, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056458

RESUMO

Currently, organic phosphorescent particles are heavily used in sensing and imaging. Up to now, most of these particles contain poisonous and/or expensive metal complexes. Environmentally friendly systems are therefore highly desired. A purely amorphous system consisting of poly(methyl methacrylate) particles with incorporated N,N,N',N'-tetrakis(4-carboxyphenyl)benzidine emitter molecules is presented in this work. Single particles with sizes between 400 and 840 nm show-depending on the environment-bright fluorescence and phosphorescence. The latter is observed when oxygen is not in the proximity of the emitting dye molecules. These particles can scavenge singlet oxygen, which is produced during the photoexcitation process, by incorporating it into the polymer matrix. This renders their use to be unharmful for the surrounding matter with possible application in marking schemes for living bodies.

4.
J Phys Chem A ; 124(3): 479-485, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31905283

RESUMO

Amorphous purely organic thin films are able to show efficient phosphorescence under ambient conditions at room temperature. This opens the perspective to a wide range of new applications, which have attracted lots of interest in the field of material science recently. Therefore, an increasing number of different molecules displaying room temperature phosphorescence (RTP) have already been reported. Whereas the efficiency, the lifetime, or the oxygen sensitivity is frequently discussed, the origin of RTP mainly remains vague. Often, material design rules tend to the development of increasingly complex structures. Here, the well-known tetra-N-phenylbenzidine (TPD), an archetypical material showing highly efficient fluorescence and RTP, is broken down to its fragments. As the complexity of the system decreases with the molecule's size, spectroscopic investigation of this molecular family enables a deeper understanding of the appearance of RTP. With spectral and time-resolved measurements, RTP can be detected for all compounds containing a biphenyl core, with lifetimes up to 0.9 s under inert gas conditions. These findings form the basis of a deeper understanding of the appearance of RTP in organic molecules and therefore allow for a more focused investigation of new materials.

5.
Front Chem ; 7: 688, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31709224

RESUMO

In this work, interactions between different host materials and a blue TADF polymer named P1 are systematically investigated. In photoluminescence, the host can have substantial impact on the photoluminescence quantum yield (PLQY) and the intensity of delayed fluorescence (Φ DF), where more than three orders of magnitude difference of Φ DF in various hosts is observed, resulting from a polarity effect of the host material and energy transfer. Additionally, an intermolecular charge-transfer (CT) emission with pronounced TADF characteristics is observed between P1 and 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T), with a singlet-triplet splitting of 7 meV. It is noted that the contribution of harvested triplets in monochrome organic light-emitting diodes (OLEDs) correlates with Φ DF. For devices based on intermolecular CT-emission, the harvested triplets contribute ~90% to the internal quantum efficiency. The results demonstrate the vital importance of host materials on improving the PLQY and sensitizing Φ DF of TADF polymers for efficient devices. Solution-processed polychrome OLEDs with a color close to a white emission are presented, with the emission of intramolecular (P1) and intermolecular TADF (PO-T2T:P1).

6.
Sci Rep ; 9(1): 15638, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666544

RESUMO

The photoluminescence quantum yield (PLQY) is an important measure of luminescent materials. Referring to the number of emitted photons per absorbed photons, it is an essential parameter that allows for primary classification of materials and further is a quantity that is of utmost importance for many detailed analyses of luminescent systems and processes. Determining the PLQY has been discussed in literature for many years and various methods are known. Absolute values can be measured directly using an appropriate setup. As this relies on the correct evaluation of photon-counts, it is a very sensitive method. Hence, systematic errors that can occur are discussed widely. However, of course those measurements also contain random uncertainties, which remain mainly unconsidered. The careful evaluation of both systematic and statistical errors of the PLQY is the only way to gain confidence in its absolute value. Here, we propose a way of evaluating the statistical uncertainty in absolute PLQY measurements. This relies on the combination of multiple measurements and the subsequent calculus of the weighted mean. The statistical uncertainty is then obtained as the standard deviation of the mean. This method not only quantifies the impact of statistical influences on the measurements, but also allows simple analysis of time-dependent systematic errors during the measurement and the identification of outliers.

7.
Sci Adv ; 5(2): eaau7310, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30746488

RESUMO

A milestone in the field of organic luminescent labeling is reached, as fast and multiple (>40 cycles) printing of information onto any substrate in any size for very low costs is shown, resulting in rewritable high-resolution (>700 dpi) and high-contrast images. By making use of a simple device structure containing nothing but highly available materials, an ultrathin, flexible, and fully transparent layer stack was realized. Using light alone, any luminescent image can be printed into and erased from this layer contactless and without the need of any ink. Compared to existing approaches, the demonstrated concept represents a promising method for production of luminescent on-demand tags with the potential to supersede conventional labeling techniques in many ways.

8.
Adv Mater ; 31(12): e1807887, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30721550

RESUMO

The development of organic materials displaying ultralong room-temperature phosphorescence (URTP) is a material design-rich research field with growing interest recently, as the luminescence characteristics have started to become interesting for applications. However, the development of systems performing under aerated conditions remains a formidable challenge. Furthermore, in the vast majority of molecular examples, the respective absorption bands of the compounds are in the near ultraviolet (UV) range, which makes UV excitation sources necessary. Herein, the synthesis and detailed analysis of new luminescent organic metal-free materials displaying, in addition to conventional fluorescence, phosphorescence with lifetimes up to 700 ms and tailored redshifted absorption bands, allowing for deep blue excitation, are reported. For the most promising targets, their application is demonstrated in the form of organic programmable tags that have been recently developed. These tags make use of reversible activation and deactivation of the URTP by toggling between the presence and absence of molecular oxygen. In this case, the activation can be achieved with visible light excitation, which greatly increases the use case scenarios by making UV sources obsolete.

9.
Sci Rep ; 8(1): 9684, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946064

RESUMO

In recent years, the organic light-emitting diode (OLED) technology has been a rapidly evolving field of research, successfully making the transition to commercial applications such as mobile phones and other small portable devices. OLEDs provide efficient generation of light, excellent color quality, and allow for innovative display designs, e.g., curved shapes, mechanically flexible and/or transparent devices. Especially their self emissive nature is a highly desirable feature for display applications. In this work, we demonstrate an approach for full-color OLED pixels that are fabricated by vertical stacking of a red-, green-, and blue-emitting unit. Each unit can be addressed separately which allows for efficient generation of every color that is accessible by superpositioning the spectra of the individual emission units. Here, we use a combination of time division multiplexing and pulse width modulation to achieve efficient color mixing. The presented device design requires only three independently addressable electrodes, simplifying both fabrication and electrical driving. The device is built in a top-emission geometry, which is highly desirable for display fabrication as the pixel can be directly deposited onto back-plane electronics. Despite the top-emission design and the application of three silver layers within the device, there is only a minor color shift even for large viewing angles. The color space spanned by the three emission sub-units exceeds the sRGB space, providing more saturated green/yellow/red colors. Furthermore, the electrical performance of each individual unit is on par with standard single emission unit OLEDs, showing very low leakage currents and achieving brightness levels above 1000 cd/m2 at moderate voltages of around 3-4 V.

10.
Light Sci Appl ; 7: 18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839572

RESUMO

Providing artificial light and enhancing the quality of the respective light sources is of continued interest in the fields of solid state, condensed matter, and semiconductor physics. Much research has been carried out to increase the luminous efficiency, lifetime and colour stability of such devices. However, the emission characteristics of a given light source do not necessarily comply with today's often sophisticated applications. Here, beam shaping addresses the transformation of a given light distribution into a customized form. This is typically achieved by secondary optical elements often sporting elaborate designs, where the actual light source takes up only a small fraction of the system's volume. Such designs limit the final light source to a single permanent operation mode, which can only be overcome by employing mechanically adjustable optical elements. Here we show that organic light-emitting diodes (OLEDs) can enable real-time regulation of a beam shape without relying on secondary optical elements and without using any mechanical adjustment. For a red light-emitting two-unit OLED architecture, we demonstrate the ability to continuously tune between strongly forward and strongly sideward emission, where the device efficiency is maintained at an application-relevant level ranging between 6 and 8% of external quantum efficiency for any chosen setting. In combination with additional optical elements, customizable and tuneable systems are possible, whereby the tuning stems from the light source itself rather than from the use of secondary optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA