Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Genes (Basel) ; 15(5)2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38790223

RESUMO

Rett Syndrome (RTT) is a severe neurodevelopmental disorder predominately diagnosed in females and primarily caused by pathogenic variants in the X-linked gene Methyl-CpG Binding Protein 2 (MECP2). Most often, the disease causing the MECP2 allele resides on the paternal X chromosome while a healthy copy is maintained on the maternal X chromosome with inactivation (XCI), resulting in mosaic expression of one allele in each cell. Preferential inactivation of the paternal X chromosome is theorized to result in reduced disease severity; however, establishing such a correlation is complicated by known MECP2 genotype effects and an age-dependent increase in severity. To mitigate these confounding factors, we developed an age- and genotype-normalized measure of RTT severity by modeling longitudinal data collected in the US Rett Syndrome Natural History Study. This model accurately reflected individual increase in severity with age and preserved group-level genotype specific differences in severity, allowing for the creation of a normalized clinical severity score. Applying this normalized score to a RTT XCI dataset revealed that XCI influence on disease severity depends on MECP2 genotype with a correlation between XCI and severity observed only in individuals with MECP2 variants associated with increased clinical severity. This normalized measure of RTT severity provides the opportunity for future discovery of additional factors contributing to disease severity that may be masked by age and genotype effects.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Índice de Gravidade de Doença , Inativação do Cromossomo X , Síndrome de Rett/genética , Síndrome de Rett/patologia , Inativação do Cromossomo X/genética , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Feminino , Criança , Cromossomos Humanos X/genética , Genótipo , Pré-Escolar , Adolescente , Adulto , Masculino , Alelos , Adulto Jovem
2.
Genet Med ; 26(5): 101075, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38251460

RESUMO

PURPOSE: This study aims to assess the diagnostic utility and provide reporting recommendations for clinical DNA methylation episignature testing based on the cohort of patients tested through the EpiSign Clinical Testing Network. METHODS: The EpiSign assay utilized unsupervised clustering techniques and a support vector machine-based classification algorithm to compare each patient's genome-wide DNA methylation profile with the EpiSign Knowledge Database, yielding the result that was reported. An international working group, representing distinct EpiSign Clinical Testing Network health jurisdictions, collaborated to establish recommendations for interpretation and reporting of episignature testing. RESULTS: Among 2399 cases analyzed, 1667 cases underwent a comprehensive screen of validated episignatures, imprinting, and promoter regions, resulting in 18.7% (312/1667) positive reports. The remaining 732 referrals underwent targeted episignature analysis for assessment of sequence or copy-number variants (CNVs) of uncertain significance or for assessment of clinical diagnoses without confirmed molecular findings, and 32.4% (237/732) were positive. Cases with detailed clinical information were highlighted to describe various utility scenarios for episignature testing. CONCLUSION: Clinical DNA methylation testing including episignatures, imprinting, and promoter analysis provided by an integrated network of clinical laboratories enables test standardization and demonstrates significant diagnostic yield and clinical utility beyond DNA sequence analysis in rare diseases.


Assuntos
Metilação de DNA , Testes Genéticos , Doenças Raras , Humanos , Metilação de DNA/genética , Doenças Raras/genética , Doenças Raras/diagnóstico , Testes Genéticos/normas , Testes Genéticos/métodos , Feminino , Regiões Promotoras Genéticas/genética , Masculino , Variações do Número de Cópias de DNA/genética , Criança , Adulto , Pré-Escolar , Impressão Genômica/genética
4.
Am J Med Genet A ; 191(1): 144-159, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36300573

RESUMO

Genes that are involved in the transcription process, mitochondrial function, glycoprotein metabolism, and ubiquitination dominate the list of 21 new genes associated with X-linked intellectual disability since the last update in 2017. The new genes were identified by sequencing of candidate genes (2), the entire X-chromosome (2), the whole exome (15), or the whole genome (2). With these additions, 42 (21%) of the 199 named XLID syndromes and 27 (25%) of the 108 numbered nonsyndromic XLID families remain to be resolved at the molecular level. Although the pace of discovery of new XLID genes has slowed during the past 5 years, the density of genes on the X chromosome that cause intellectual disability still appears to be twice the density of intellectual disability genes on the autosomes.


Assuntos
Genes Ligados ao Cromossomo X , Deficiência Intelectual , Humanos , Mutação , Genes Ligados ao Cromossomo X/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Exoma , Linhagem
5.
Am J Med Genet A ; 188(10): 2988-2998, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35924478

RESUMO

Rett (RTT) syndrome, a neurodevelopmental disorder caused by pathogenic variation in the MECP2 gene, is characterized by developmental regression, loss of purposeful hand movements, stereotypic hand movements, abnormal gait, and loss of spoken language. Due to the X-linked inheritance pattern, RTT is typically limited to females. Recent studies revealed somatic mosaicism in MECP2 in male patients with RTT-like phenotypes. While detecting mosaic variation using Sanger sequencing is theoretically possible for mosaicism over ~15%-20%, several variables, including efficiency of PCR, background noise, and/or human error, contribute to a low detection rate using this technology. Mosaic variants in two males were detected by next generation sequencing (NGS; Case 1) and by Sanger re-sequencing (Case 2). Both had targeted digital PCR (dPCR) to confirm the variants. In this report, we present two males with classic RTT syndrome in whom we identified pathogenic variation in the MECP2 gene in the mosaic state (c.730C > T (p.Gln244*) in Patient 1 and c.397C > T (p.Arg133Cys) in Patient 2). In addition, estimates and measures of mosaic variant fraction were surprisingly similar between Sanger sequencing, NGS, and dPCR. The mosaic state of these variants contributed to a lengthy diagnostic odyssey for these patients. While NGS and even Sanger sequencing may be viable methods of detecting mosaic variation in DNA or RNA samples, applying targeted dPCR to supplement these sequencing technologies would provide confirmation of somatic mosaicism and mosaic fraction.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett , DNA , Feminino , Humanos , Masculino , Mosaicismo , Mutação , Fenótipo , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética
6.
Hum Mutat ; 43(11): 1609-1628, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35904121

RESUMO

An expanding range of genetic syndromes are characterized by genome-wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive, and specific biomarkers that have recently been applied in clinical diagnosis of genetic syndromes. Episignatures are contained within the broader disorder-specific genome-wide DNA methylation changes, which can share significant overlap among different conditions. In this study, we performed functional genomic assessment and comparison of disorder-specific and overlapping genome-wide DNA methylation changes related to 65 genetic syndromes with previously described episignatures. We demonstrate evidence of disorder-specific and recurring genome-wide differentially methylated probes (DMPs) and regions (DMRs). The overall distribution of DMPs and DMRs across the majority of the neurodevelopmental genetic syndromes analyzed showed substantial enrichment in gene promoters and CpG islands, and under-representation of the more variable intergenic regions. Analysis showed significant enrichment of the DMPs and DMRs in gene pathways and processes related to neurodevelopment, including neurogenesis, synaptic signaling and synaptic transmission. This study expands beyond the diagnostic utility of DNA methylation episignatures by demonstrating correlation between the function of the mutated genes and the consequent genomic DNA methylation profiles as a key functional element in the molecular etiology of genetic neurodevelopmental disorders.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Ilhas de CpG/genética , Metilação de DNA/genética , DNA Intergênico , Epigênese Genética , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Síndrome
7.
Mol Genet Genomic Med ; 10(5): e1917, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35318820

RESUMO

BACKGROUND: Rett syndrome (RTT) is a rare neurodevelopmental disorder associated with pathogenic MECP2 variants. Because the MECP2 gene is subject to X-chromosome inactivation (XCI), factors including MECP2 genotypic variation, tissue differences in XCI, and skewing of XCI all likely contribute to the clinical severity of individuals with RTT. METHODS: We analyzed the XCI patterns from blood samples of 320 individuals and their mothers. It includes individuals with RTT (n = 287) and other syndromes sharing overlapping phenotypes with RTT (such as CDKL5 Deficiency Disorder [CDD, n = 16]). XCI status in each proband/mother duo and the parental origin of the preferentially inactivated X chromosome were analyzed. RESULTS: The average XCI ratio in probands was slightly increased compared to their unaffected mothers (73% vs. 69%, p = .0006). Among the duos with informative XCI data, the majority of individuals with classic RTT had their paternal allele preferentially inactivated (n = 180/220, 82%). In sharp contrast, individuals with CDD had their maternal allele preferentially inactivated (n = 10/12, 83%). Our data indicate a weak positive correlation between XCI skewing ratio and clinical severity scale (CSS) scores in classic RTT patients with maternal allele preferentially inactivated XCI (rs  = 0.35, n = 40), but not in those with paternal allele preferentially inactivated XCI (rs  = -0.06, n = 180). The most frequent MECP2 pathogenic variants were enriched in individuals with highly/moderately skewed XCI patterns, suggesting an association with higher levels of XCI skewing. CONCLUSION: These results extend our understanding of the pathogenesis of RTT and other syndromes with overlapping clinical features by providing insight into the both XCI and the preferential XCI of parental alleles.


Assuntos
Síndrome de Rett , Genótipo , Humanos , Mutação , Fenótipo , Síndrome de Rett/genética , Inativação do Cromossomo X
8.
HGG Adv ; 3(1): 100075, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35047860

RESUMO

Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions.

9.
Eur J Hum Genet ; 30(4): 420-427, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34992252

RESUMO

ZNF711 is one of eleven zinc-finger genes on the X chromosome that have been associated with X-linked intellectual disability. This association is confirmed by the clinical findings in 20 new cases in addition to 11 cases previously reported. No consistent growth aberrations, craniofacial dysmorphology, malformations or neurologic findings are associated with alterations in ZNF711. The intellectual disability is typically mild and coexisting autism occurs in half of the cases. Carrier females show no manifestations. A ZNF711-specific methylation signature has been identified which can assist in identifying new cases and in confirming the pathogenicity of variants in the gene.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Transtorno Autístico/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Genes Ligados ao Cromossomo X , Humanos , Deficiência Intelectual/genética
10.
Clin Dysmorphol ; 30(4): 167-172, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34456244

RESUMO

OBJECTIVES: Pathogenic missense variants in the potassium channel tetramerization domain-containing 1 (KCTD1) gene are associated with autosomal dominant Scalp-Ear-Nipple syndrome (SENS), a type of ectodermal dysplasia characterized by aplasia cutis congenita of the scalp, hairless posterior scalp nodules, absent or rudimentary nipples, breast aplasia and external ear anomalies. We report a child with clinical features of an ectodermal dysplasia, including sparse hair, dysmorphic facial features, absent nipples, 2-3 toe syndactyly, mild atopic dermatitis and small cupped ears with overfolded helices. We also review the published cases of SENS with molecularly confirmed KCTD1 variants. METHODS AND RESULTS: Using whole-exome sequencing, we identified a novel, de novo in-frame insertion in the broad-complex, tramtrack and bric-a-brac (BTB) domain of the KCTD1 gene. By comparing to the previously reported patients, we found that our patient's clinical features and molecular variant are consistent with a diagnosis of SENS. CONCLUSIONS: This is only the 13th KCTD1 variant described and the first report of an in-frame insertion causing clinical features, expanding the mutational spectrum of KCTD1 and SENS.


Assuntos
Displasia Ectodérmica , Mamilos , Canais de Potássio , Anormalidades Múltiplas , Criança , Proteínas Correpressoras/metabolismo , Orelha Externa/anormalidades , Orelha Externa/metabolismo , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Humanos , Hipospadia , Masculino , Hipotonia Muscular , Mamilos/anormalidades , Canais de Potássio/genética , Couro Cabeludo/anormalidades , Couro Cabeludo/metabolismo
12.
Genet Med ; 23(6): 1065-1074, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33547396

RESUMO

PURPOSE: We describe the clinical implementation of genome-wide DNA methylation analysis in rare disorders across the EpiSign diagnostic laboratory network and the assessment of results and clinical impact in the first subjects tested. METHODS: We outline the logistics and data flow between an integrated network of clinical diagnostics laboratories in Europe, the United States, and Canada. We describe the clinical validation of EpiSign using 211 specimens and assess the test performance and diagnostic yield in the first 207 subjects tested involving two patient subgroups: the targeted cohort (subjects with previous ambiguous/inconclusive genetic findings including genetic variants of unknown clinical significance) and the screening cohort (subjects with clinical findings consistent with hereditary neurodevelopmental syndromes and no previous conclusive genetic findings). RESULTS: Among the 207 subjects tested, 57 (27.6%) were positive for a diagnostic episignature including 48/136 (35.3%) in the targeted cohort and 8/71 (11.3%) in the screening cohort, with 4/207 (1.9%) remaining inconclusive after EpiSign analysis. CONCLUSION: This study describes the implementation of diagnostic clinical genomic DNA methylation testing in patients with rare disorders. It provides strong evidence of clinical utility of EpiSign analysis, including the ability to provide conclusive findings in the majority of subjects tested.


Assuntos
Metilação de DNA , Epigenômica , Canadá , Europa (Continente) , Humanos , Síndrome
13.
J Autism Dev Disord ; 51(2): 677-684, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32592095

RESUMO

The course of 187 individuals ages 3-21 years with Autistic Disorder was traced through a period of 20 years (enrollment: 1995-1998, follow up: 2014-2019). Specific genetic and environmental causes were identified in only a minority. Intellectual disability coexisted in 84%. Few became independent with 99% living at home with relatives, in disability group homes or in residential facilities. Seven individuals (3.7%) attained postsecondary education, two receiving baccalaureate degrees, two receiving associate degrees, and three receiving certificates from college disability programs. It may be anticipated that the long term outcome for individuals currently diagnosed with Autism Spectrum Disorder (ASD) will be substantially better than for individuals with Autistic Disorder in this cohort.


Assuntos
Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Inquéritos e Questionários , Adolescente , Transtorno Autístico/psicologia , Criança , Pré-Escolar , Estudos de Coortes , Escolaridade , Feminino , Seguimentos , Testes Genéticos/métodos , Humanos , Deficiência Intelectual/psicologia , Masculino , South Carolina/epidemiologia , Fatores de Tempo , Adulto Jovem
14.
Mol Genet Metab ; 132(1): 27-37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129689

RESUMO

Pathogenic alterations in the DPM2 gene have been previously described in patients with hypotonia, progressive muscle weakness, absent psychomotor development, intractable seizures, and early death. We identified biallelic DPM2 variants in a 23-year-old male with truncal hypotonia, hypertonicity, congenital heart defects, intellectual disability, and generalized muscle wasting. His clinical presentation was much less severe than that of the three previously described patients. This is the second report on this ultra-rare disorder. Here we review the characteristics of previously reported individuals with a defect in the DPM complex while expanding the clinical phenotype of DPM2-Congenital Disorders of Glycosylation. In addition, we offer further insights into the pathomechanism of DPM2-CDG disorder by introducing glycomics and lipidomics analysis.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Manosiltransferases/genética , Adulto , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/patologia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Masculino , Debilidade Muscular/diagnóstico , Debilidade Muscular/genética , Debilidade Muscular/patologia , Mutação/genética , Fenótipo
15.
Am J Med Genet A ; 182(9): 2168-2174, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32681719

RESUMO

A family with three affected males and a second family with a single affected male with intellectual disability, microcephaly, ophthalmoplegia, deafness, and Involuntary limb movements were reported by Schimke and Associates in 1984. The affected males with Schimke X-linked intellectual disability (XLID) syndrome (OMIM# 312840) had a similar facial appearance with deep-set eyes, downslanting palpebral fissures, hypotelorism, narrow nose and alae nasi, cupped ears and spacing of the teeth. Two mothers had mild hearing loss but no other manifestations of the disorder. The authors considered the disorder to be distinctive and likely X-linked. Whole genome sequencing in the single affected male available and the three carrier females from one of the families with Schimke XLID syndrome identified a 2 bp deletion in the BCAP31 gene. During the past decade, pathogenic alterations of the BCAP31 gene have been associated with deafness, dystonia, and central hypomyelination, an XLID condition given the eponym DDCH syndrome. A comparison of clinical findings in Schimke XLID syndrome and DDCH syndrome shows them to be the same clinical entity. The BCAP31 protein functions in endoplasmic reticulum-associated degradation to promote ubiquitination and destruction of misfolded proteins.


Assuntos
Arteriosclerose/patologia , Deleção de Genes , Proteínas de Membrana/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação , Síndrome Nefrótica/patologia , Osteocondrodisplasias/patologia , Fenótipo , Doenças da Imunodeficiência Primária/patologia , Embolia Pulmonar/patologia , Adolescente , Adulto , Arteriosclerose/genética , Pré-Escolar , Feminino , Estudos de Associação Genética , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Síndrome Nefrótica/genética , Osteocondrodisplasias/genética , Linhagem , Doenças da Imunodeficiência Primária/genética , Embolia Pulmonar/genética , Síndrome , Adulto Jovem
16.
Hum Mutat ; 41(1): 150-168, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31448840

RESUMO

Xq22 deletions that encompass PLP1 (Xq22-PLP1-DEL) are notable for variable expressivity of neurological disease traits in females ranging from a mild late-onset form of spastic paraplegia type 2 (MIM# 312920), sometimes associated with skewed X-inactivation, to an early-onset neurological disease trait (EONDT) of severe developmental delay, intellectual disability, and behavioral abnormalities. Size and gene content of Xq22-PLP1-DEL vary and were proposed as potential molecular etiologies underlying variable expressivity in carrier females where two smallest regions of overlap (SROs) were suggested to influence disease. We ascertained a cohort of eight unrelated patients harboring Xq22-PLP1-DEL and performed high-density array comparative genomic hybridization and breakpoint-junction sequencing. Molecular characterization of Xq22-PLP1-DEL from 17 cases (eight herein and nine published) revealed an overrepresentation of breakpoints that reside within repeats (11/17, ~65%) and the clustering of ~47% of proximal breakpoints in a genomic instability hotspot with characteristic non-B DNA density. These findings implicate a potential role for genomic architecture in stimulating the formation of Xq22-PLP1-DEL. The correlation of Xq22-PLP1-DEL gene content with neurological disease trait in female cases enabled refinement of the associated SROs to a single genomic interval containing six genes. Our data support the hypothesis that genes contiguous to PLP1 contribute to EONDT.


Assuntos
Deleção Cromossômica , Cromossomos Humanos X , Estudos de Associação Genética , Predisposição Genética para Doença , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Característica Quantitativa Herdável , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Linhagem , Fenótipo , Sequências Repetitivas de Ácido Nucleico , Fatores Sexuais , Síndrome , Inativação do Cromossomo X
18.
Cytogenet Genome Res ; 160(1): 2-10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31865307

RESUMO

Strumae ovarii are neoplasms composed of normal-appearing thyroid tissue that occur within the ovary and rarely spread to extraovarian sites. A unique case of struma ovarii with widespread dissemination detected 48 years after removal of a pelvic dermoid provided the opportunity to reexamine the molecular nature of this form of neoplasm. One tumor, from the heart, consisting of benign thyroid tissue was found to have whole-genome homozygosity. Another tumor from the right mandible composed of malignant-appearing thyroid tissue showed whole-genome homozygosity and a deletion of 7p, presumably the second hit that transformed it into a cancerous tumor. Specimens from 2 other cases of extraovarian struma confined to the abdomen and 8 of 9 cases of intraovarian struma showed genome-wide segmental homozygosity. These findings confirm errors in meiosis as the origin of struma ovarii. The histological and molecular findings further demonstrate that even when outside the ovary, strumae ovarii can behave nonaggressively until they receive a second hit, thereafter behaving like cancer.


Assuntos
Carcinoma/genética , Genoma Humano , Meiose , Neoplasias Ovarianas/genética , Estruma Ovariano/genética , Teratoma/genética , Adulto , Idoso , Carcinoma/diagnóstico , Feminino , Deleção de Genes , Neoplasias Cardíacas/genética , Neoplasias Cardíacas/secundário , Homozigoto , Humanos , Neoplasias Mandibulares/genética , Neoplasias Mandibulares/secundário , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/diagnóstico , Análise de Sequência de RNA , Estruma Ovariano/diagnóstico , Teratoma/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
19.
Front Genet ; 10: 1074, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737052

RESUMO

X-linked intellectual disability (XLID) is known to explain up to 10% of the intellectual disability in males. A large number of families in which intellectual disability is the only clinically consistent manifestation have been described. While linkage analysis and candidate gene testing were the initial approaches to find genes and variants, next generation sequencing (NGS) has accelerated the discovery of more and more XLID genes. Using NGS, we resolved the genetic cause of MRX82 (OMIM number 300518), a large Spanish Basque family with five affected males with intellectual disability and a wide phenotypic variability among them despite having the same pathogenic variant. Although the previous linkage study had mapped the locus to an interval of 7.6Mb in Xq24-Xq25 of the X chromosome, this region contained too many candidate genes to be analysed using conventional approaches. NGS revealed a novel nonsense variant: c.118C > T; p.Gln40* in UPF3B, a gene previously implicated in XLID that encodes a protein involved in nonsense-mediated mRNA decay (NMD). Further molecular studies showed that the mRNA transcript was not completely degraded by NMD. However, UPF3B protein was not detected by conventional Western Blot analysis at least downstream of the 40 residue demonstrating that the phenotype could be due to the loss of functional protein. This is the first report of a premature termination codon before the three functional domains of the UPF3B protein and these results directly implicate the absence of these domains with XLID, autism and some dysmorphic features.

20.
Clin Epigenetics ; 11(1): 64, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029150

RESUMO

BACKGROUND: ADNP syndrome is a rare Mendelian disorder characterized by global developmental delay, intellectual disability, and autism. It is caused by truncating mutations in ADNP, which is involved in chromatin regulation. We hypothesized that the disruption of chromatin regulation might result in specific DNA methylation patterns that could be used in the molecular diagnosis of ADNP syndrome. RESULTS: We identified two distinct and partially opposing genomic DNA methylation episignatures in the peripheral blood samples from 22 patients with ADNP syndrome. The "epi-ADNP-1" episignature included ~ 6000 mostly hypomethylated CpGs, and the "epi-ADNP-2" episignature included ~ 1000 predominantly hypermethylated CpGs. The two signatures correlated with the locations of the ADNP mutations. Epi-ADNP-1 mutations occupy the N- and C-terminus, and epi-ADNP-2 mutations are centered on the nuclear localization signal. The episignatures were enriched for genes involved in neuronal system development and function. A classifier trained on these profiles yielded full sensitivity and specificity in detecting patients with either of the two episignatures. Applying this model to seven patients with uncertain clinical diagnosis enabled reclassification of genetic variants of uncertain significance and assigned new diagnosis when the primary clinical suspicion was not correct. When applied to a large cohort of unresolved patients with developmental delay (N = 1150), the model predicted three additional previously undiagnosed patients to have ADNP syndrome. DNA sequencing of these subjects, wherever available, identified pathogenic mutations within the gene domains predicted by the model. CONCLUSIONS: We describe the first Mendelian condition with two distinct episignatures caused by mutations in a single gene. These highly sensitive and specific DNA methylation episignatures enable diagnosis, screening, and genetic variant classifications in ADNP syndrome.


Assuntos
Metilação de DNA , Proteínas de Homeodomínio/genética , Mutação , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Transtorno do Espectro Autista/genética , Criança , Pré-Escolar , Biologia Computacional/métodos , Ilhas de CpG , Diagnóstico Precoce , Epigênese Genética , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA