Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Pharmacol Res ; 203: 107165, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561112

RESUMO

The clinical use of the DNA damaging anticancer drug doxorubicin (DOX) is limited by irreversible cardiotoxicity, which depends on the cumulative dose. The RAS-homologous (RHO) small GTPase RAC1 contributes to DOX-induced DNA damage formation and cardiotoxicity. However, the pathophysiological relevance of other RHO GTPases than RAC1 and different cardiac cell types (i.e., cardiomyocytes, non-cardiomyocytes) for DOX-triggered cardiac damage is unclear. Employing diverse in vitro and in vivo models, we comparatively investigated the level of DOX-induced DNA damage in cardiomyocytes versus non-cardiomyocytes (endothelial cells and fibroblasts), in the presence or absence of selected RHO GTPase inhibitors. Non-cardiomyocytes exhibited the highest number of DOX-induced DNA double-strand breaks (DSB), which were efficiently repaired in vitro. By contrast, rather low levels of DSB were formed in cardiomyocytes, which however remained largely unrepaired. Moreover, DOX-induced apoptosis was detected only in non-cardiomyocytes but not in cardiomyocytes. Pharmacological inhibitors of RAC1 and CDC42 most efficiently attenuated DOX-induced DNA damage in all cell types examined in vitro. Consistently, immunohistochemical analyses revealed that the RAC1 inhibitor NSC23766 and the pan-RHO GTPase inhibitor lovastatin reduced the level of DOX-induced residual DNA damage in both cardiomyocytes and non-cardiomyocytes in vivo. Overall, we conclude that endothelial cells, fibroblasts and cardiomyocytes contribute to the pathophysiology of DOX-induced cardiotoxicity, with RAC1- and CDC42-regulated signaling pathways being especially relevant for DOX-stimulated DSB formation and DNA damage response (DDR) activation. Hence, we suggest dual targeting of RAC1/CDC42-dependent mechanisms in multiple cardiac cell types to mitigate DNA damage-dependent cardiac injury evoked by DOX-based anticancer therapy.


Assuntos
Aminoquinolinas , Doxorrubicina , Células Endoteliais , Fibroblastos , Miócitos Cardíacos , Pirimidinas , Proteína cdc42 de Ligação ao GTP , Proteínas rac1 de Ligação ao GTP , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Doxorrubicina/toxicidade , Doxorrubicina/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Cardiotoxicidade , Antibióticos Antineoplásicos/toxicidade , Camundongos , Apoptose/efeitos dos fármacos , Masculino , Humanos , Camundongos Endogâmicos C57BL , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Neuropeptídeos/metabolismo , Dano ao DNA/efeitos dos fármacos , Células Cultivadas
2.
Cell Death Discov ; 10(1): 125, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461295

RESUMO

Meriolin derivatives represent a new class of kinase inhibitors with a pronounced cytotoxic potential. Here, we investigated a newly synthesized meriolin derivative (termed meriolin 16) that displayed a strong apoptotic potential in Jurkat leukemia and Ramos lymphoma cells. Meriolin 16 induced apoptosis in rapid kinetics (within 2-3 h) and more potently (IC50: 50 nM) than the previously described derivatives meriolin 31 and 36 [1]. Exposure of Ramos cells to meriolin 16, 31, or 36 for 5 min was sufficient to trigger severe and irreversible cytotoxicity. Apoptosis induction by all three meriolin derivatives was independent of death receptor signaling but required caspase-9 and Apaf-1 as central mediators of the mitochondrial death pathway. Meriolin-induced mitochondrial toxicity was demonstrated by disruption of the mitochondrial membrane potential (ΔΨm), mitochondrial release of proapoptotic Smac, processing of the dynamin-like GTPase OPA1, and subsequent fragmentation of mitochondria. Remarkably, all meriolin derivatives were able to activate the mitochondrial death pathway in Jurkat cells, even in the presence of the antiapoptotic Bcl-2 protein. In addition, meriolins were capable of inducing cell death in imatinib-resistant K562 and KCL22 chronic myeloid leukemia cells as well as in cisplatin-resistant J82 urothelial carcinoma and 2102EP germ cell tumor cells. Given the frequent inactivation of the mitochondrial apoptosis pathway by tumor cells, such as through overexpression of antiapoptotic Bcl-2, meriolin derivatives emerge as promising therapeutic agents for overcoming treatment resistance.

3.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119591, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730131

RESUMO

The anticancer drug cisplatin (CisPt) injures post-mitotic neuronal cells, leading to neuropathy. Furthermore, CisPt triggers cell death in replicating cells. Here, we aim to unravel the relevance of different types of CisPt-induced DNA lesions for evoking neurotoxicity. To this end, we comparatively analyzed wild-type and loss of function mutants of C. elegans lacking key players of specific DNA repair pathways. Deficiency in ercc-1, which is essential for nucleotide excision repair (NER) and interstrand crosslink (ICL) repair, revealed the most pronounced enhancement in CisPt-induced neurotoxicity with respect to the functionality of post-mitotic chemosensory AWA neurons, without inducing neuronal cell death. Potentiation of CisPt-triggered neurotoxicity in ercc-1 mutants was accompanied by complex alterations in both basal and CisPt-stimulated mRNA expression of genes involved in the regulation of neurotransmission, including cat-4, tph-1, mod-1, glr-1, unc-30 and eat-18. Moreover, xpf-1, csb-1, csb-1;xpc-1 and msh-6 mutants were significantly more sensitive to CisPt-induced neurotoxicity than the wild-type, whereas xpc-1, msh-2, brc-1 and dog-1 mutants did not distinguish from the wild-type. The majority of DNA repair mutants also revealed increased basal germline apoptosis, which was analyzed for control. Yet, only xpc-1, xpc-1;csb-1 and dog-1 mutants showed elevated apoptosis in the germline following CisPt treatment. To conclude, we provide evidence that neurotoxicity, including sensory neurotoxicity, is triggered by CisPt-induced DNA intra- and interstrand crosslinks that are subject of repair by NER and ICL repair. We hypothesize that especially ERCC1/XPF, CSB and MSH6-related DNA repair protects from chemotherapy-induced neuropathy in the context of CisPt-based anticancer therapy.


Assuntos
Antineoplásicos , Cisplatino , Animais , Cães , Cisplatino/toxicidade , Caenorhabditis elegans/genética , Dano ao DNA , Antineoplásicos/toxicidade , DNA
4.
Biochim Biophys Acta Mol Cell Res ; 1869(10): 119320, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35817175

RESUMO

Rho GTPases like RAC1 are localized on the inner side of the outer cell membrane where they act as molecular switches that can trigger signal transduction pathways in response to various extracellular stimuli. Nuclear functions of RAC1 were identified that are related to mitosis, cell cycle arrest and apoptosis. Previously, we showed that RAC1 plays a role in the doxorubicin (Dox)-induced DNA damage response (DDR). In this context it is still unknown whether cytosolic RAC1 modulates the Dox-induced DDR or if a nuclear fraction of RAC1 is involved. Here, we silenced RAC1 in mouse embryonic fibroblasts (MEF) pharmacologically with EHT1864 or by using siRNA against Rac1. Additionally, we transfected MEF with RAC1 mutants (wild-type, dominant-negative, constitutively active) containing a nuclear localization sequence (NLS). Afterwards, we analysed the Dox-induced DDR by evaluation of fluorescent nuclear γH2AX and 53BP1 foci formation, as well as by detection of activated proteins of the DDR by western blot to elucidate the role of nuclear RAC1 in the DDR. Treatment with EHT1864 as well as Rac1 knock-down reduced the Dox-induced DSB-formation to a similar extent. Enhanced nuclear localization of dominant-negative as well as constitutively active RAC1 mimicked these effects. Expression of the RAC1 mutants altered the Dox-induced amount of pP53 and pKAP1 protein. The observed effects were independent of S1981 ATM phosphorylation. We conclude that RAC1 is required for a substantial activation of the Dox-induced DDR and balanced levels of active/inactive RAC1 inside the nucleus are a prerequisite for this response.


Assuntos
Dano ao DNA , Fibroblastos , Animais , Núcleo Celular/metabolismo , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Fibroblastos/metabolismo , Camundongos , Fosforilação
5.
Molecules ; 27(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35684504

RESUMO

Recently, we identified secalonic acid F (SA), 5-epi-nakijiquinone Q (NQ) and 5-epi-ilimaquinone (IQ) as natural compounds (NC) affecting mechanisms of the DNA damage response (DDR). Here, we further characterized their effects on DDR, DNA repair and cytotoxicity if used in mono- and co-treatment with conventional anticancer therapeutics (cAT) (cisplatin (Cis), doxorubicin (Doxo)) in vitro. All three NC influence the phosphorylation level of selected DDR-related factors (i.e., pCHK1, pKAP1, pP53, pRPA32) in mono- and/or co-treatment. Both SA and NQ attenuate the Cis- and Doxo-induced G2/M-phase arrest and effectively stimulate caspase-mediated apoptosis. Notably, SA impacts DNA repair as reflected by enhanced steady-state levels of Cis-(1,2-GpG)-DNA adducts and Doxo-induced DNA double-strand breaks (DSB). Moreover, SA decreased the mRNA and protein expression of the homologous recombination (HR)-related DSB repair factors RAD51 and BRCA1. Both SA and NQ promote Cis- and Doxo-induced cytotoxicity in an additive to synergistic manner (CI ≤ 1.0). Summarizing, we conclude that SA promotes cAT-driven caspase-dependent cell death by interfering with DSB repair and DDR-related checkpoint control mechanisms. Hence, SA is considered as the most promising lead compound to evaluate its therapeutic window in forthcoming pre-clinical in vivo studies.


Assuntos
Reparo do DNA , Neoplasias , Apoptose , Caspases , Cisplatino/farmacologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Doxorrubicina/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
Cell Death Dis ; 13(4): 293, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365623

RESUMO

Overexpression of histone deacetylases (HDACs) in cancer commonly causes resistance to genotoxic-based therapies. Here, we report on the novel mechanism whereby overexpressed class I HDACs increase the resistance of glioblastoma cells to the SN1 methylating agent temozolomide (TMZ). The chemotherapeutic TMZ triggers the activation of the DNA damage response (DDR) in resistant glioma cells, leading to DNA lesion bypass and cellular survival. Mass spectrometry analysis revealed that the catalytic activity of class I HDACs stimulates the expression of the E3 ubiquitin ligase RAD18. Furthermore, the data showed that RAD18 is part of the O6-methylguanine-induced DDR as TMZ induces the formation of RAD18 foci at sites of DNA damage. Downregulation of RAD18 by HDAC inhibition prevented glioma cells from activating the DDR upon TMZ exposure. Lastly, RAD18 or O6-methylguanine-DNA methyltransferase (MGMT) overexpression abolished the sensitization effect of HDAC inhibition on TMZ-exposed glioma cells. Our study describes a mechanism whereby class I HDAC overexpression in glioma cells causes resistance to TMZ treatment. HDACs accomplish this by promoting the bypass of O6-methylguanine DNA lesions via enhancing RAD18 expression. It also provides a treatment option with HDAC inhibition to undermine this mechanism.


Assuntos
Neoplasias Encefálicas , Glioma , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Histona Desacetilases/farmacologia , Humanos , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/farmacologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ubiquitina-Proteína Ligases/farmacologia
7.
Neurotoxicology ; 91: 1-10, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35487345

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a severe side effect of conventional anticancer therapeutics (cAT) that significantly impacts the quality of life of tumor patients. The molecular mechanisms of CIPN are incompletely understood and there are no effective preventive or therapeutic measures available to date. Here, we present a brief overview of the current knowledge about mechanisms underlying CIPN and discuss DNA damage-related stress responses as feasible targets for the prevention of CIPN. In addition, we discuss that the nematode Caenorhabditis elegans is a useful 3R-conform model organism to further elucidate molecular mechanisms of CIPN and to identify novel lead compounds protecting from cAT-triggered neuropathy.


Assuntos
Antineoplásicos , Neoplasias , Doenças do Sistema Nervoso Periférico , Antineoplásicos/efeitos adversos , Dano ao DNA , Humanos , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Qualidade de Vida
8.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34681565

RESUMO

Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Dano ao DNA , Proteínas Ativadoras de GTPase/genética , Manganês/toxicidade , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Reparo do DNA , Relação Dose-Resposta a Droga , Modelos Animais , Mortalidade , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/genética , Fatores de Tempo
9.
Pharmacol Res ; 174: 105921, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601079

RESUMO

Neurotoxicity is a frequent side effect of cisplatin (CisPt)-based anticancer therapy whose pathophysiology is largely vague. Here, we exploited C. elegans as a 3R-compliant in vivo model to elucidate molecular mechanisms contributing to CisPt-induced neuronal dysfunction. To this end, we monitored the impact of CisPt on various sensory functions as well as pharyngeal neurotransmission by recording electropharyngeograms (EPGs). CisPt neither affected food and odor sensation nor mechano-sensation, which involve dopaminergic and glutaminergic neurotransmission. However, CisPt reduced serotonin-regulated pharyngeal pumping activity independent of changes in the morphology of related neurons. CisPt-mediated alterations in EPGs were fully rescued by addition of serotonin (5-HT) (≤ 2 mM). Moreover, the CisPt-induced pharyngeal injury was prevented by co-incubation with the clinically approved serotonin re-uptake inhibitory drug duloxetine. A protective effect of 5-HT was also observed with respect to CisPt-mediated impairment of another 5-HT-dependent process, the egg laying activity. Importantly, CisPt-induced apoptosis in the gonad and learning disability were not influenced by 5-HT. Using different C. elegans mutants we found that CisPt-mediated (neuro)toxicity is independent of serotonin biosynthesis and re-uptake and likely involves serotonin-receptor subtype 7 (SER-7)-related functions. In conclusion, by measuring EPGs as a surrogate parameter of neuronal dysfunction, we provide first evidence that CisPt-induced neurotoxicity in C. elegans involves 5-HT-dependent neurotransmission and SER-7-mediated signaling mechanisms and can be prevented by the clinically approved antidepressant duloxetine. The data highlight the particular suitability of C. elegans as a 3R-conform in vivo model in molecular (neuro)toxicology and, moreover, for the pre-clinical identification of neuroprotective candidate drugs.


Assuntos
Antineoplásicos/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Cisplatino/toxicidade , Modelos Animais de Doenças , Síndromes Neurotóxicas/metabolismo , Serotonina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Cloridrato de Duloxetina/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/fisiopatologia , Faringe/efeitos dos fármacos , Faringe/fisiologia , Inibidores da Recaptação de Serotonina e Norepinefrina/farmacologia , Transmissão Sináptica/efeitos dos fármacos
10.
Cancer Lett ; 520: 361-373, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389435

RESUMO

The anthracycline derivative doxorubicin (Doxo) induces DNA double-strand breaks (DSBs) by inhibition of DNA topoisomerase type II. Defective mismatch repair (MMR) contributes to Doxo resistance and has been reported for colon and mammary carcinomas. Here, we investigated the outcome of pharmacological inhibition of various DNA repair-related mechanisms on Doxo-induced cytotoxicity employing MMR-deficient HCT-116 colon carcinoma cells. Out of different inhibitors tested (i.e. HDACi, PARPi, MRE11i, RAD52i, RAD51i), we identified the RAD51-inhibitor B02 as the most powerful compound to synergistically increase Doxo-induced cytotoxicity. B02-mediated synergism rests on pleiotropic mechanisms, including pronounced G2/M arrest, damage to mitochondria and caspase-driven apoptosis. Of note, B02 also promotes the cytotoxicity of oxaliplatin and 5-fluoruracil (5-FU) in HCT-116 cells and, furthermore, also increases Doxo-induced cytotoxicity in MMR-proficient colon and mammary carcinoma cells. Summarizing, pharmacological inhibition of RAD51 is suggested to synergistically increase the cytotoxic efficacy of various types of conventional anticancer drugs in different tumor entities. Hence, pre-clinical in vivo studies are preferable to determine the therapeutic window of B02 in a clinically oriented therapeutic regimen.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Rad51 Recombinase/genética , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Dano ao DNA/efeitos dos fármacos , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Reparo de Erro de Pareamento de DNA/genética , Doxorrubicina/efeitos adversos , Sinergismo Farmacológico , Fluoruracila/farmacologia , Células HCT116 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Oxaliplatina/farmacologia , Rad51 Recombinase/antagonistas & inibidores
11.
Exp Neurol ; 341: 113705, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753139

RESUMO

Anticancer therapeutics can provoke severe side effects that impair the patient's quality of life. A frequent dose-limiting side effect of platinum-based anticancer therapy is neurotoxicity. Its pathophysiology is poorly understood, and effective preventive or therapeutic measures are missing. Therefore, elucidation of the molecular mechanism of platinating drug-induced neurotoxicity and the development of preventive strategies is urgently needed. To this end, we aim to use C. elegans as a 3R-compliant in vivo model. The 3R principles were conceived for animal welfare in science concerning animal experiments, which should be replaced, reduced or refined. We can analytically demonstrate dose-dependent uptake of cisplatin (CisPt) in C. elegans, as well as genotoxic and cytotoxic effects based on DNA adduct formation (i.e., 1,2-GpG intrastrand crosslinks), induction of apoptosis, and developmental toxicity. Measuring the impairment of pharyngeal pumping as a marker of neurotoxicity, we found that especially CisPt reduces the pumping frequency at concentrations where basal and touch-provoked movement were not yet affected. CisPt causes glutathione (GSH) depletion and RNAi-mediated knockdown of the glutamate-cysteine ligase GCS-1 aggravates the CisPt-induced inhibition of pharyngeal pumping. Moreover, N-acetylcysteine (NAC) mitigated CisPt-triggered toxicity, indicating that GSH depletion contributes to the CisPt-induced pharyngeal damage. In addition to NAC, amifostine (WR1065) also protected the pharynx of C. elegans from the toxic effects of CisPt. Measuring pharyngeal activity by the electrophysiological recording of neurotransmission in the pharynx, we confirmed that CisPt is neurotoxic in C. elegans and that NAC is neuroprotective in the nematode. The data support the hypothesis that monitoring the pharyngeal activity of C. elegans is a useful surrogate marker of CisPt-induced neurotoxicity. In addition, a low GSH pool reduces the resistance of neurons to CisPt treatment, and both NAC and WR1065 are capable of attenuating platinum-induced neurotoxicity during post-incubation in C. elegans. Overall, we propose C. elegans as a 3R-compliant in vivo model to study the molecular mechanisms of platinum-induced neurotoxicity and to explore novel neuroprotective therapeutic strategies to alleviate respective side effects of platinum-based cancer therapy.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Modelos Animais de Doenças , Síndromes Neurotóxicas/prevenção & controle , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Quimioprevenção/métodos , Relação Dose-Resposta a Droga , Mercaptoetilaminas/farmacologia , Mercaptoetilaminas/uso terapêutico , Síndromes Neurotóxicas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Compostos de Platina/toxicidade
12.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635356

RESUMO

Histone deacetylase inhibitors (HDACi) are already approved for the therapy of leukemias. Since they are also emerging candidate compounds for the treatment of non-malignant diseases, HDACi with a wide therapeutic window and low hazard potential are desirable. Here, we investigated a panel of 12 novel hydroxamic acid- and benzamide-type HDACi employing non-malignant V79 hamster cells as toxicology guideline-conform in vitro model. HDACi causing a ≥10-fold preferential cytotoxicity in malignant neuroblastoma over non-malignant V79 cells were selected for further genotoxic hazard analysis, including vorinostat and entinostat for control. All HDACi selected, (i.e., KSK64, TOK77, DDK137 and MPK77) were clastogenic and evoked DNA strand breaks in non-malignant V79 cells as demonstrated by micronucleus and comet assays, histone H2AX foci formation analyses (γH2AX), DNA damage response (DDR) assays as well as employing DNA double-strand break (DSB) repair-defective VC8 hamster cells. Genetic instability induced by hydroxamic acid-type HDACi seems to be independent of bulky DNA adduct formation as concluded from the analysis of nucleotide excision repair (NER) deficient mutants. Summarizing, KSK64 revealed the highest genotoxic hazard and DDR stimulating potential, while TOK77 and MPK77 showed the lowest DNA damaging capacity. Therefore, these compounds are suggested as the most promising novel candidate HDACi for subsequent pre-clinical in vivo studies.


Assuntos
Benzamidas/toxicidade , Inibidores de Histona Desacetilases/toxicidade , Ácidos Hidroxâmicos/toxicidade , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Ensaio Cometa , Cricetinae , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Histonas/química , Histonas/metabolismo , Humanos , Testes para Micronúcleos , Fosforilação , Vorinostat/toxicidade
13.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118711, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32224192

RESUMO

Cardiotoxicity is a highly relevant, because often life-threatening, adverse effect of doxorubicin (Doxo)-based anticancer therapy. Here, we investigated the Doxo-response of cardiovascular stem/progenitor cells employing a mouse embryonic stem cell (mESC)-based in vitro differentiation model. Endothelial progenitor cells revealed a pronounced Doxo sensitivity as compared to mESC, differentiated endothelial-like (EC) and cardiomyocyte-like cells (CM) and CM progenitors, which rests on the activation of senescence. Doxo treatment of EC progenitors altered protein expression of individual endothelial markers, actin cytoskeleton morphology, mRNA expression of genes related to mitochondrial functions, autophagy, apoptosis, and DNA repair as well as mitochondrial DNA content, respiration and ATP production in the surviving differentiated EC progeny. By contrast, LDL uptake, ATP-stimulated Ca2+ release, and cytokine-stimulated ICAM-1 expression remained unaffected by the anthracycline treatment. Thus, exposure of EC progenitors to Doxo elicits isolated and persistent dysfunctions in the surviving EC progeny. In conclusion, we suggest that Doxo-induced injury of EC progenitors adds to anthracycline-induced cardiotoxicity, making this cell-type a preferential target for pharmacoprotective and regenerative strategies.


Assuntos
Cardiotoxicidade/genética , Doxorrubicina/efeitos adversos , Células Progenitoras Endoteliais/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/genética , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cardiotoxicidade/patologia , Cardiotoxicidade/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Neoplasias/complicações , Neoplasias/tratamento farmacológico
14.
Biochim Biophys Acta Mol Cell Res ; 1867(6): 118678, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32061892

RESUMO

The endothelium contributes to the pathophysiology of adverse effects caused by conventional (genotoxic) anticancer therapeutics (cAT). The relevance of structurally different types of cAT-induced DNA lesions for eliciting selected endothelial stress responses is largely unknown. Here, we analyzed the cAT-induced formation of DNA double-strand breaks (DSB), transcription blockage and DNA damage response (DDR) in time kinetic analyses employing a monolayer of primary human endothelial cells (HUVEC). We observed that the degree of cAT-induced transcription blockage, the number of DSB and activation of DDR-related factors diverge. For instance, ionizing radiation caused the formation of numerous DSB and triggerd a substantial activation of ATM/Chk2 signaling, which however were not accompanied by a significant transcription inhibition. By contrast, the DNA cross-linking cAT cisplatin triggered a rapid and substantial blockage of transcription, which yet was not reflected by an appreciable number of DSB or increased levels of pATM/pChk2. In general, cAT-stimulated ATM-dependent phosphorylation of Kap1 (Ser824) and p53 (Ser15) reflected best cAT-induced transcription blockage. In conclusion, cAT-induced formation of DSB and profound activation of prototypical DDR factors is independent of the inhibition of RNA polymerase II-regulated transcription in an endothelial monolayer. We suggest that DSB formed directly or indirectly following cAT-treatment do not act as comprehensive triggers of superior signaling pathways shutting-down transcription while, at the same time, causing an appreciable stimulation of the DDR. Rather, it appears that distinct cAT-induced DNA lesions elicit diverging signaling pathways, which separately control transcription vs. DDR activity in the endothelium.


Assuntos
Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Cisplatino/farmacologia , Proteína 28 com Motivo Tripartido/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Cultura Primária de Células , Radiação Ionizante , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/efeitos da radiação
15.
Aging Dis ; 11(1): 60-72, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32010481

RESUMO

Statins belong to the most pre-scribed cholesterol lowering drugs in western countries. Their competitive inhibition of the HMG-CoA reductase causes a reduction in the mevalonate pool, resulting in reduced cholesterol biosynthesis, impaired protein prenylation and glycosylation. Recently, a cohort study showed a decreased mortality rate in humans between age 78-90 going along with statin therapy, which is independent of blood cholesterol levels. As C. elegans harbors the mevalonate pathway, but is cholesterol-auxotroph, it is particularly suitable to study cholesterol-independent effects of statins on aging-associated phenotypes. Here, we show that low doses of lovastatin or a mild HMG-CoA reductase knockdown via hmgr-1(RNAi) in C. elegans substantially attenuate aging pigment accumulation, which is a well-established surrogate marker for biological age. Consistently, for two statins we found dosages, which prolonged the lifespan of C. elegans. Together with an observed reduced fertility, slower developmental timing and thermal stress resistance this complex of outcomes point to the involvement of DAF-16/hFOXO3a, the master regulator of stress resistance and longevity. Accordingly, prolonged low-dose statin exposure leads to an increased expression of jnk-1, a known activator of DAF-16. Moreover, the beneficial effects of statins on aging pigments and lifespan depend on DAF-16 and JNK-1, as shown in epistasis analyses. These effects can be reverted by mevalonate supplementation. In conclusion, we describe a lifespan extension in C. elegans, which is conferred via two well-conserved stress-related factors (JNK-1, DAF-16) and results from mevalonate depletion.

16.
Bioorg Med Chem ; 28(4): 115279, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31980363

RESUMO

Natural compounds (NC) are an important source of anticancer drugs. The genomic DNA of tumor cells is a major target of conventional anticancer therapeutics (cAT). DNA damage elicits a complex stress response programme termed DNA damage response (DDR), with the PI3-like kinase ATM and ATR being the key regulators. Since the DDR coordinates mechanisms of DNA repair and apoptosis, hence regulating the balance between death and survival, it is an attractive target of novel anticancer strategies. The aim of the study was to identify natural compounds derived from endophytic fungi, lichens, marine sponges or plants that interfere with mechanisms of the DDR. To this end, the cytotoxic and DDR modulating potency of 296 natural compounds, used alone or in combination with the cAT cisplatin (Cis) and doxorubicin (Doxo) was investigated by fluorescence-based analysis of the ATM/ATR-catalyzed S139 phosphorylation of histone 2AX (γH2AX), a surrogate marker of DNA damage-triggered DDR. After initial screening, a total of ten natural compounds were identified that were toxic in pancreatic carcinoma cells and activated the DDR on their own and/or promoted the DDR if used in combination with cAT. Their mode of action was shown to be independent of drug transport mechanisms. Based on their chemical structures, DDR modulatory activity and published data we suggest the marine NC 5-epi-nakijiquinone Q and 5-epi-ilimaquinone as well as the fungal compound secalonic acid F as most promising NC-based drug candidates for future synthesis of DDR-modulating chemical derivatives and their preclinical in vitro and in vivo testing.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Antineoplásicos/química , Produtos Biológicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Dano ao DNA , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
Sci Rep ; 9(1): 13800, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551436

RESUMO

The endothelium represents the inner cell layer of blood vessels and is supported by smooth muscle cells and pericytes, which form the vessel structure. The endothelium is involved in the pathogenesis of many diseases, including the development of atherosclerosis. Due to direct blood contact, the blood vessel endothelium is inevitably exposed to genotoxic substances that are systemically taken up by the body, including benzo[a]pyrene, which is a major genotoxic component in cigarette smoke and a common environmental mutagen and human carcinogen. Here, we evaluated the impact of benzo[a]pyrene diol epoxide (BPDE), which is the reactive metabolite of benzo[a]pyrene, on the three innermost vessel cell types. Primary human endothelial cells (HUVEC), primary human smooth muscle cells (HUASMC) and primary human pericytes (HPC) were treated with BPDE, and analyses of cytotoxicity, cellular senescence and genotoxic effects were then performed. The results showed that HUVEC were more sensitive to the cytotoxic activity of BPDE than HUASMC and HPC. We further show that HUVEC display a detraction in the repair of BPDE-induced adducts, as determined through the comet assay and the quantification of BPDE adducts in post-labelling experiments. A screening for DNA repair factors revealed that the nucleotide excision repair (NER) proteins ERCC1, XPF and ligase I were expressed at lower levels in HUVEC compared with HUASMC and HPC, which corresponds with the impaired NER-mediated removal of BPDE adducts from DNA. Taken together, the data revealed that HUVEC exhibit an unexpected DNA repair-impaired phenotype, which has implications on the response of the endothelium to genotoxicants that induce bulky DNA lesions, including the development of vascular diseases resulting from smoking and environmental pollution.


Assuntos
Benzo(a)pireno/efeitos adversos , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Linhagem Celular , Ensaio Cometa/métodos , DNA/genética , Adutos de DNA/efeitos dos fármacos , Adutos de DNA/genética , Dano ao DNA/efeitos dos fármacos , Compostos de Epóxi/efeitos adversos , Humanos , Mutagênicos/efeitos adversos
18.
Purinergic Signal ; 15(3): 287-298, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31270713

RESUMO

Extracellular nucleotides mediate multiple physiological effects such as proliferation, differentiation, or induction of apoptosis through G protein-coupled P2Y receptors or P2X ion channels. Evaluation of the complete physiological role of nucleotides has long been hampered by a lack of potent and selective ligands for all P2 subtypes. Meanwhile, for most of the P2 receptors, selective ligands are available, but only a few potent and selective P2Y2 receptor antagonists are described. This limits the understanding of the role of P2Y2 receptors. The purpose of this study was to search for P2Y2 receptor antagonists by a combinatorial screening of a library of around 415 suramin-derived compounds. Calcium fluorescence measurements at P2Y2 receptors recombinantly expressed in human 1321N1 astrocytoma cells identified NF272 [8-(4-methyl-3-(3-phenoxycarbonylimino-benzamido)benzamido)-naphthalene-1,3,5-trisulfonic acid trisodium salt] as a competitive P2Y2 receptor antagonist with a Ki of 19 µM which is 14-fold more potent than suramin at this receptor subtype. The SCHILD analysis of competitive inhibition resulted in a pA2 value of 5.03 ± 0.22 (mean ± SEM) with a slope not significantly different from unity. Among uracil-nucleotide-preferring P2Y receptors, NF272 shows a moderate selectivity over P2Y4 (3.6-fold) and P2Y6 (5.7-fold). However, NF272 is equipotent at P2Y1, and even more potent at P2Y11 and P2Y12 receptors. Up to 250 µM, NF272 showed no cytotoxicity in MTT cell viability assays in 1321N1, HEK293, and OVCAR-3 cells. Further, NF272 was able to inhibit the ATP-induced calcium signal in OVCAR-3 cells demonstrated to express P2Y2 receptors. In conclusion, NF272 is a competitive but non-selective P2Y2 receptor antagonist with 14-fold higher potency than suramin lacking cytotoxic effects. Therefore, NF272 may serve as a lead structure for further development of P2Y2 receptor antagonists.


Assuntos
Descoberta de Drogas , Naftalenos/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/efeitos dos fármacos , Animais , Humanos , Naftalenos/química , Antagonistas do Receptor Purinérgico P2Y/química , Suramina/análogos & derivados
19.
Biochem Pharmacol ; 164: 82-93, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936017

RESUMO

Cardiotoxicity is the dose limiting adverse effect of anthracycline-based anticancer therapy. Inhibitor studies point to Rac1 as therapeutic target to prevent anthracycline-induced cardiotoxicity. Yet, supporting genetic evidence is still missing and the pathophysiological relevance of different cardiac cell types is unclear. Here, we employed a tamoxifen-inducible cardiomyocyte-specific rac1 knock-out mouse model (Rac1flox/flox/MHC-MerCreMer) to investigate the impact of Rac1 expression in cardiomyocytes on cardiac injury following doxorubicin treatment. Distinctive stress responses resulting from doxorubicin treatment were observed, including upregulation of systemic markers of inflammation (IL-6, IL-1α, MCP-1), cardiac damage (ANP, BNP), DNA damage (i.e. DNA double-strand breaks (DSB)), DNA damage response (DDR) and cell death. Measuring the acute doxorubicin response, the serum level of MCP-1 was elevated, cardiac mRNA expression of Hsp70 was reduced and cardiac DDR was specifically enhanced in Rac1 deficient mice. The frequency of apoptotic heart cells remained unaffected by Rac1. Employing a subactue model, the number of doxorubicin-induced DSB was significantly reduced if Rac1 is absent. Yet, the doxorubicin-triggered increase in serum ANP and BNP levels remained unaffected by Rac1. Overall, knock-out of rac1 in cardiomyocytes confers partial protection against doxorubicin-induced cardiac injury. Hence, the data provide first genetic evidence supporting the view that pharmacological targeting of Rac1 is useful to widen the therapeutic window of anthracycline-based anticancer therapy by alleviating acute/subacute cardiomyocyte damage. Furthermore, considering published data obtained from the use of pharmacological Rac1 inhibitors, the results of our study indicate that Rac1-regulated functions of cardiac cell types others than cardiomyocytes additionally influence the adverse outcomes of anthracycline treatment on the heart.


Assuntos
Antraciclinas/toxicidade , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Neuropeptídeos/biossíntese , Proteínas rac1 de Ligação ao GTP/biossíntese , Animais , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuropeptídeos/genética , Proteínas rac1 de Ligação ao GTP/genética
20.
DNA Repair (Amst) ; 73: 17-27, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30413344

RESUMO

The accelerated ageing disease Werner Syndrome (WRN) is characterized by pronounced atherosclerosis. Here, we investigated the influence of WRN downregulation on the functionality of non-replicating human endothelial cells. RNAi-mediated downregulation of WRN reduces cell motility and enhances the expression of factors regulating adhesion, inflammation, hemostasis and vasomotor tone. Moreover, WRN influences endothelial barrier function and Ca2+-release, while cell adhesion, Dil-acLDL-uptake and the mRNA expression of NO-synthases (eNOS, iNOS) remained unaffected. Regarding motility, we propose that WRN affects Rac1/FAK/ß1-integrin-related mechanisms regulating cell polarity and directed motility. Since oxidative DNA base damage contributes to aging and atherosclerosis and WRN affects DNA repair, we investigated whether downregulation of base excision repair (BER) factors mimics the effects of WRN knock-down. Indeed, downregulation of particular WRN-interacting base excision repair (BER) proteins (APE1, NEIL1, PARP1) imitates the inhibitory effect of WRN on motility. Knock-down of OGG1, which does not interact with WRN, does not influence motility but increases the mRNA expression of E-selectin, ICAM, VCAM, CCL2 and VEGFR and stimulates adhesion. Thus, individual BER factors themselves differently impact endothelial cell functionality and homeostasis. Impairment of endothelial activities caused by genotoxic stressor (tBHQ) remained largely unaffected by WRN. Summarizing, both WRN, WRN-associated BER proteins and OGG1 promote the maintenance of endothelial cell homeostasis, thereby counteracting the development of ageing-related endothelial malfunction in non-proliferating endothelial cells.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , Homeostase , Células Endoteliais da Veia Umbilical Humana/metabolismo , Síndrome de Werner/enzimologia , Cálcio/metabolismo , Adesão Celular , Movimento Celular , Expressão Gênica , Humanos , Lipoproteínas LDL/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA