Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Energy Adv ; 3(2): 482-494, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38371916

RESUMO

Nanoporous carbon materials with customized structural features enable sustainable and electrochemical applications through improved performance and efficiency. Carbon spherogels (highly porous carbon aerogel materials consisting of an assembly of hollow carbon nanosphere units with uniform diameters) are desirable candidates as they combine exceptional electrical conductivity, bespoke shell porosity, tunability of the shell thickness, and a high surface area. Herein, we introduce a novel and more environmentally friendly sol-gel synthesis of resorcinol-formaldehyde (RF) templated by polystyrene spheres, forming carbon spherogels in an organic solvent. By tailoring the molar ratio of resorcinol to isopropyl alcohol (R/IPA) and the concentration of polystyrene, the appropriate synthesis conditions were identified to produce carbon spherogels with adjustable wall thicknesses. A single-step solvent exchange process from deionized water to isopropyl alcohol reduces surface tension within the porous gel network, making this approach significantly time and cost-effective. The lower surface tension of IPA enables solvent extraction under ambient conditions, allowing for direct carbonization of RF gels while maintaining a specific surface area loss of less than 20% compared to supercritically dried counterparts. The specific surface areas obtained after physical activation with carbon dioxide are 2300-3600 m2 g-1. Transmission and scanning electron microscopy verify the uniform, hollow carbon sphere network morphology. Specifically, those carbon spherogels are high-performing electrodes for energy storage in a supercapacitor setup featuring a specific capacitance of up to 204 F g-1 at 200 mA g-1 using 1 M potassium hydroxide (KOH) solution as the electrolyte.

2.
Materials (Basel) ; 16(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770221

RESUMO

The characterization of Zr-containing dispersoids in aluminum alloys is challenging due to their broad size distribution, low volume fraction, and heterogeneous distribution within the grains. In this work, small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) were compared to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) regarding their capability to characterize Zr-containing dispersoids in aluminum alloys. It was demonstrated that both scattering techniques are suitable tools to characterize dispersoids in a multi-phase industrial 7xxx series aluminum alloy. While SAXS is more sensitive than SANS due to the high electron density of Zr-containing dispersoids, SANS has the advantage of being able to probe a much larger sample volume. The combination of both scattering techniques allows for the verification that the contribution from dispersoids can be separated from that of other precipitate phases such as the S-phase or GP-zones. The size distributions obtained from SAXS, SANS and TEM showed good agreement. The SEM-derived size distributions were, however, found to significantly deviate from those of the other techniques, which can be explained by considering the resolution-limited restrictions of the different techniques.

3.
J Colloid Interface Sci ; 608(Pt 1): 1064-1073, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785454

RESUMO

HYPOTHESIS: While surfactant solutions mobilize residual oil under optimal conditions by lowering the water-oil interfacial tension, emulsion phases outside of the optimum tend to be immobile. How are mobility and texture of such phases related, and how can the stability of these phases be understood? Can non-optimized surfactant solutions improve displacement processes through mobility control? EXPERIMENT: Emulsification and miscibility during surfactant flooding were investigated in microfluidics with generic oil and surfactant solutions. The salt concentration was varied in an exceptionally wide range across the optimal displacement conditions. The resulting emulsion textures were characterized in situ by optical and fluorescence microscopy and ex situ visually and by Small-Angle X-ray Scattering. FINDINGS: During displacement, oil is increasingly solubilized and transported in a phase with a foam-like texture that develops from a droplet traffic flow. The extent and stability of these emulsion phases depend on the salinity and surfactant efficiency. The similarity with textures of classic foam phases is used to hypothesize the mechanisms that stabilize such macroemulsions in porous media. The observed microscopic displacement mechanisms can be traced back to foam formation, quality and transport. The resulting phases are of particular interest for mobility control during surfactant flooding, which, however, requires further investigation.


Assuntos
Tensoativos , Água , Emulsões , Porosidade , Tensão Superficial
4.
Chem Commun (Camb) ; 57(32): 3905-3908, 2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33871512

RESUMO

Extraordinarily homogeneous, freestanding titania-loaded carbon spherogels can be obtained using Ti(acac)2(OiPr)2 in the polystyrene sphere templated resorcinol-formaldehyde gelation. Thereby, a distinct, crystalline titania layer is achieved inside every hollow sphere building unit. These hybrid carbon spherogels allow capitalizing on carbon's electrical conductivity and the lithium-ion intercalation capacity of titania.

5.
ACS Appl Nano Mater ; 4(12): 14115-14125, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34977479

RESUMO

A promising route to monolithic, hollow sphere carbon assemblies based on sustainable precursors with a tailored nanostructure is presented. These carbon assemblies, recently termed carbon spherogels, are generated via a polystyrene sphere template-based sol-gel process of mimosa tannin and biomass-derived 5-(hydroxymethyl)furfural. By completely replacing petroleum-based precursors (especially toxic formaldehyde) highly porous, nanoscale carbon monoliths are obtained, which are investigated as state-of-the-art, sustainable electrode materials for energy storage. This study defines the required synthesis parameters, in particular the highly acidic initial pH and a tannin/water ratio of at least 0.05 or lower, for a successful and homogeneous generation of these biobased carbon spherogels.

6.
Sci Rep ; 9(1): 807, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692601

RESUMO

Cupric oxide (CuO) nanowires were produced by thermal oxidation of copper surfaces at temperatures up to 450 °C. Three different surfaces, namely a copper foil as well as evaporation deposited copper and an application relevant sputtered copper film on Si(100) substrates were characterized ex-situ before and after the experiment. The development of oxide layers and nanowires were monitored in-situ using grazing incidence small angle X-ray scattering. The number density of nanowires is highest for the sputtered surface and lowest for the surface prepared by evaporation deposition. This can be linked to different oxide grain sizes and copper grain boundary diffusions on the different surfaces. Small grains of the copper substrate and high surface roughness thereby lead to promoted growth of the nanowires.

7.
Rev Sci Instrum ; 89(3): 035103, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604726

RESUMO

A heating stage originally designed for diffraction experiments is implemented into a Bruker NANOSTAR instrument for in situ grazing incidence small-angle x-ray scattering experiments. A controlled atmosphere is provided by a dome separating the sample environment from the evacuated scattering instrument. This dome is double shelled in order to enable cooling water to flow through it. A mesoporous silica film templated by a self-assembled block copolymer system is investigated in situ during step-wise heating in air. The GISAXS pattern shows the structural development of the ordered lattice of parallel cylindrical pores. The deformation of the elliptical pore-cross section perpendicular to the film surface was studied with increasing temperature. Moreover, the performance of the setup was tested by controlled in situ heating of a copper surface under controlled oxygen containing atmosphere.

8.
Science ; 357(6356): 1118-1122, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28912238

RESUMO

Cotton is a promising basis for wearable smart textiles. Current approaches that rely on fiber coatings suffer from function loss during wear. We present an approach that allows biological incorporation of exogenous molecules into cotton fibers to tailor the material's functionality. In vitro model cultures of upland cotton (Gossypium hirsutum) are incubated with 6-carboxyfluorescein-glucose and dysprosium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-glucose, where the glucose moiety acts as a carrier capable of traveling from the vascular connection to the outermost cell layer of the ovule epidermis, becoming incorporated into the cellulose fibers. This yields fibers with unnatural properties such as fluorescence or magnetism. Combining biological systems with the appropriate molecular design offers numerous possibilities to grow functional composite materials and implements a material-farming concept.


Assuntos
Celulose/química , Fibra de Algodão/métodos , Disprósio/metabolismo , Fluoresceínas/metabolismo , Glucose/análogos & derivados , Glucose/metabolismo , Celulose/metabolismo , Técnicas de Cultura , Fluoresceínas/química , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo
9.
Bioinspir Biomim ; 11(6): 065001, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734809

RESUMO

Living nature and human technology apply different principles to create hard, strong and tough materials. In this review, we compare and discuss prominent aspects of these alternative strategies, and demonstrate for selected examples that nanoscale-precision biotemplating is able to produce uncommon mechanical properties as well as actuating behavior, resembling to some extent the properties of the original natural templates. We present and discuss mechanical testing data showing for the first time that nanometer-precision biotemplating can lead to porous ceramic materials with deformation characteristics commonly associated with either biological or highly advanced technical materials. We also review recent findings on the relation between hierarchical structuring and humidity-induced directional motion. Finally, we discuss to which extent the observed behavior is in agreement with previous results and theories on the mechanical properties of multiscale hierarchical materials, as well as studies of highly disperse technical materials, together with an outlook for further lines of investigation.


Assuntos
Materiais Biomiméticos , Cerâmica , Teste de Materiais , Nanocompostos , Fenômenos Biomecânicos , Dureza , Humanos
10.
J Appl Crystallogr ; 49(Pt 5): 1713-1720, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27738418

RESUMO

Mesoporous silica films templated by pluronic P123 were prepared using spin and dip coating. The ordered cylindrical structure within the films deforms due to shrinkage during calcination. Grazing-incidence small-angle X-ray scattering (GISAXS) measurements reveal that both the unit cell and the cross section of the pores decrease in size, mainly normal to the surface of the substrate, leading to elliptical cross sections of the pores with axis ratios of about 1:2. Water take-up by the pores upon changing the relative humidity can be monitored quantitatively by the shift in the critical angle of X-ray reflection as seen by the Yoneda peak.

11.
Beilstein J Nanotechnol ; 7: 637-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27335753

RESUMO

We use a soft templating approach in combination with evaporation induced self-assembly to prepare mesoporous films containing cylindrical pores with elliptical cross-section on an ordered pore lattice. The film is deposited on silicon-based commercial atomic force microscope (AFM) cantilevers using dip coating. This bilayer cantilever is mounted in a humidity controlled AFM, and its deflection is measured as a function of relative humidity. We also investigate a similar film on bulk silicon substrate using grazing-incidence small-angle X-ray scattering (GISAXS), in order to determine nanostructural parameters of the film as well as the water-sorption-induced deformation of the ordered mesopore lattice. The strain of the mesoporous layer is related to the cantilever deflection using simple bilayer bending theory. We also develop a simple quantitative model for cantilever deflection which only requires cantilever geometry and nanostructural parameters of the porous layer as input parameters.

12.
Adv Mater ; 28(26): 5235-40, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27153214

RESUMO

The former ovuliferous scales of biotemplated cones of Pinus nigra show moisture-driven actuation similar to their biological templates, demonstrating a facile route to obtain ceramic moisture-sensitive bilayer actuators. Based on comparative analysis of their hierarchical nanometer-precision replica structures, using, e.g., spatially resolved small-angle X-ray scattering, the origin of the actuation is explained.


Assuntos
Materiais Biomiméticos/química , Cerâmica/química , Pinus/anatomia & histologia , Porosidade , Molhabilidade
13.
J Struct Biol ; 194(3): 292-302, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26965558

RESUMO

Cotton is the one of the world's most important crops. Like any other crop, cotton growth/development and fiber quality is highly dependent on environmental factors. Increasing global weather instability has been negatively impacting its economy. Cotton is a crop that exerts an intensive pressure over natural resources (land and water) and demands an overuse of pesticides. Thus, the search for alternative cotton culture methods that are pesticide-free (biocotton) and enable customized standard fiber quality should be encouraged. Here we describe a culture of Gossypium hirsutum ("Upland" Cotton) utilizing a greenhouse and hydroponics in which the fibers are morphological similar to conventional cultures and structurally fit into the classical two-phase cellulose I model with 4.19nm crystalline domains surrounded by amorphous regions. These fibers exhibit a single crystalline form of cellulose I-Iß, monoclinic unit cell. Fiber quality bulk analysis shows an improved length, strength, whiteness when compared with soil-based cultures. Finally, we show that our fibers can be spun, used for production of non-woven fabrics and indigo-vat stained demonstrating its potential in industrial and commercial applications.


Assuntos
Fibra de Algodão/normas , Gossypium/química , Hidroponia/métodos , Celulose/química , Fibra de Algodão/métodos , Genes de Plantas , Gossypium/crescimento & desenvolvimento , Efeito Estufa , Hidroponia/normas
14.
ACS Nano ; 9(10): 9792-801, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26364796

RESUMO

While over the past years the syntheses of colloidal quantum dots (CQDs) with core/shell structures were continuously improved to obtain highly efficient emission, it has remained a challenge to use them as active materials in laser devices. Here, we report random lasing at room temperature in films of CdSe/CdS CQDs with different core/shell band alignments and extra thick shells. Even though the lasing process is based on random scattering, we find systematic dependencies of the laser thresholds on morphology and laser spot size. To minimize laser thresholds, optimizing the film-forming properties of the CQDs, proven by small-angle X-ray scattering, was found to be more important than the optical parameters of the CQDs, such as biexciton lifetime and binding energy or fluorescence decay time. Furthermore, the observed systematic behavior turned out to be highly reproducible after storing the samples in air for more than 1 year. These highly reproducible systematic dependencies suggest that random lasing experiments are a valuable tool for testing nanocrystal materials, providing a direct and simple feedback for further development of colloidal gain materials toward lasing in continuous wave operation.

15.
Chem Mater ; 26(20): 5914-5922, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25673918

RESUMO

We reveal the existence of two different crystalline phases, i.e., the metastable rock salt and the equilibrium zinc blende phase within the CdS-shell of PbS/CdS core/shell nanocrystals formed by cationic exchange. The chemical composition profile of the core/shell nanocrystals with different dimensions is determined by means of anomalous small-angle X-ray scattering with subnanometer resolution and is compared to X-ray diffraction analysis. We demonstrate that the photoluminescence emission of PbS nanocrystals can be drastically enhanced by the formation of a CdS shell. Especially, the ratio of the two crystalline phases in the shell significantly influences the photoluminescence enhancement. The highest emission was achieved for chemically pure CdS shells below 1 nm thickness with a dominant metastable rock salt phase fraction matching the crystal structure of the PbS core. The metastable phase fraction decreases with increasing shell thickness and increasing exchange times. The photoluminescence intensity depicts a constant decrease with decreasing metastable rock salt phase fraction but shows an abrupt drop for shells above 1.3 nm thickness. We relate this effect to two different transition mechanisms for changing from the metastable rock salt phase to the equilibrium zinc blende phase depending on the shell thickness.

16.
J Colloid Interface Sci ; 369(1): 154-9, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22239986

RESUMO

Nanoparticles capped with amine ligands with different steric properties, dodecylamine and oleylamine, respectively, are investigated in the solid state as well as in solution. A combined X-ray diffraction, small angle X-ray scattering and electron microscopy investigation showed that the nanoparticles exhibit the sphalerite modification of ZnS as crystal phase with a diameter of 3-5 nm. A close packing of the monocrystalline nanoparticles in the solid state is observed. However, in the dodecylamine sample, besides spherical particles, a fraction of the nanoparticles is elongated. The nanoparticles are readily resoluble in apolar solvents like hexane. Dynamic light scattering (DLS) and SAXS investigations of the solutions reveal that the nanoparticles are dissolved as singular particles. In the case of oleylamine-capped ZnS, a defined core-shell structure with a ZnS core with a diameter of 4 nm and an organic shell with a thickness of approximately 2 nm have been found. Dodecylamine-capped nanoparticles slightly tend to form agglomerates with a diameter of approximately 40 nm.

17.
Carbohydr Polym ; 87(1): 257-264, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34662959

RESUMO

Transparent cellulose sheets were prepared through tape-casting a solution of cellulose. Flexible, luminescent sheets were produced by adding europium trichloride to the casting solution and treating the sheets with an aqueous solution of ammonium fluoride. Scanning electron micrographs of the resulting sheets showed europium trifluoride particles with diameters from 200nm to 500nm. These were found by transmission electron microscopy to be agglomerates of crystallites in the size range of 10-20nm. The structure of supercritically dried sheets was further assessed by small-angle X-ray scattering and suggests a preferred orientation of slightly elongated pores of roughly 12nm in diameter. Evaluation of the emission characteristics of the sheets showed the band pattern between 580nm and 700nm typical for Eu3+ phosphors. Our developed process is a versatile tool for the fabrication of transparent cellulose structures with different shapes and various embedded functional particles.

18.
ACS Nano ; 5(5): 3758-65, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21500803

RESUMO

Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region, making these materials promising as environmentally benign alternatives to established infrared active nanocrystals containing toxic metals such as Hg, Cd, and Pb. We present Ag(2)Se nanocrystals in detail, giving size-tunable luminescence with quantum yields above 1.7%. The luminescence, with a decay time on the order of 130 ns, was shown to improve due to the growth of a monolayer thick ZnSe shell. Photoconductivity with a quantum efficiency of 27% was achieved by blending the Ag(2)Se nanocrystals with a soluble fullerene derivative. The co-injection of lithium silylamide was found to be crucial to the synthesis of Ag chalcogenide nanocrystals, which drastically increased their nucleation rate even at relatively low growth temperatures. Because the same observation was made for the nucleation of Cd chalcogenide nanocrystals, we conclude that the addition of lithium silylamide might generally promote wet-chemical synthesis of metal chalcogenide nanocrystals, including in as-yet unexplored materials.


Assuntos
Amidas/química , Calcogênios/química , Calcogênios/efeitos da radiação , Iluminação/métodos , Nanoestruturas/química , Pontos Quânticos , Prata/química , Amidas/efeitos da radiação , Coloides/química , Coloides/efeitos da radiação , Cristalização/métodos , Raios Infravermelhos , Luz , Teste de Materiais , Nanoestruturas/efeitos da radiação , Nanoestruturas/ultraestrutura , Prata/efeitos da radiação , Propriedades de Superfície
19.
J Colloid Interface Sci ; 359(1): 163-70, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21507419

RESUMO

Dilution induced changes in the microstructure and rheological behavior of micelles formed by a cationic surfactant-anionic hydrotrope mixture has been investigated in the hydrotrope-rich region. The surfactant used is cetyltrimethylammonium bromide (CTAB) and the hydrotropic salt is sodium 3-hydroxy naphthalene 2-carboxylate (SHNC). The concentration of the mixture is varied from 0.5% to 10.0% w/w (φ=0.005-0.100) at a fixed weight ratio of hydrotrope to surfactant (85:15). Rheological studies indicate Newtonian flow behavior at low and high volume fractions (0.005 and 0.100) while a shear thinning behavior is observed at intermediate volume fractions. The zero-shear viscosity η(0) also passes through a maximum upon changes in the concentration. The most striking feature in our study is that a low viscosity Newtonian fluid transforms to a viscoelastic fluid, upon dilution, and then again to a Newtonain fluid. Small angle neutron scattering studies of 10.0% micellar solution show the presence of rod-like aggregates. Upon dilution, the scattering intensity per unit concentration shows an increase in the low q-region. The nature of pair distance distribution function and subsequent model fitting indicates a transition from rod-like micelles to unilamellar vesicles upon dilution. This behavior is explained in terms of the volume fraction dependant solubilization of hydrotropes in the rod-like micelles and consequent changes in the composition of the mixed micelles.

20.
Phys Chem Chem Phys ; 13(13): 5872-80, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21331429

RESUMO

A model free evaluation of small angle scattering data of interacting particles results in real space curves that are often difficult to interpret. It is then easier to use a model for the inter and/or the intra particle effects. Such a procedure requires the selection of appropriate models. The selection of the correct model is facilitated by interpreting parts of the purely model free real space results of the scattering data. The corresponding functions for hard, charged, and attractive spheres are simulated as well as the curves of spheres in BCC crystalline order and of cylinders in hexagonal order. The simulated results are compared to experimental data obtained from concentrated emulsions. Estimations for particle diameter, type of interaction, next neighbour distance, and volume fraction can be deduced from most of the data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA