Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Appl Environ Microbiol ; 81(23): 8108-17, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26386051

RESUMO

Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level.


Assuntos
Acetatos/metabolismo , Biocombustíveis/análise , Etanol/metabolismo , NAD/metabolismo , Saccharomyces cerevisiae/metabolismo , Álcool Desidrogenase/metabolismo , Anaerobiose , Coenzimas/metabolismo , Citosol/metabolismo , Fermentação , Engenharia Genética , NADP/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
2.
Genome Announc ; 1(3)2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23792743

RESUMO

Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

3.
Eukaryot Cell ; 9(5): 738-50, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20305004

RESUMO

In plants and animals, cryptochromes function as either photoreceptors or circadian clock components. We have examined the cryptochrome from the filamentous fungus Neurospora crassa and demonstrate that Neurospora cry encodes a DASH-type cryptochrome that appears capable of binding flavin adenine dinucleotide (FAD) and methenyltetrahydrofolate (MTHF). The cry transcript and CRY protein levels are strongly induced by blue light in a wc-1-dependent manner, and cry transcript is circadianly regulated, with a peak abundance opposite in phase to frq. Neither deletion nor overexpression of cry appears to perturb the free-running circadian clock. However, cry disruption knockout mutants show a small phase delay under circadian entrainment. Using electrophoretic mobility shift assays (EMSA), we show that CRY is capable of binding single- and double-stranded DNA (ssDNA and dsDNA, respectively) and ssRNA and dsRNA. Whole-genome microarray experiments failed to identify substantive transcriptional regulatory activity of cry under our laboratory conditions.


Assuntos
Criptocromos/genética , Neurospora crassa/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Sítios de Ligação , Relógios Biológicos/genética , Relógios Biológicos/efeitos da radiação , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Sequência Conservada , Criptocromos/química , Criptocromos/metabolismo , DNA Fúngico/metabolismo , Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Ácido Fólico/análogos & derivados , Ácido Fólico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Luz , Dados de Sequência Molecular , Mutação/genética , Neurospora crassa/citologia , Neurospora crassa/metabolismo , Neurospora crassa/efeitos da radiação , Fenótipo , Ligação Proteica/efeitos da radiação , Dímeros de Pirimidina/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
4.
Genes Dev ; 21(12): 1494-505, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17575051

RESUMO

band, an allele enabling clear visualization of circadianly regulated spore formation (conidial banding), has remained an integral tool in the study of circadian rhythms for 40 years. bd was mapped using single-nucleotide polymorphisms (SNPs), cloned, and determined to be a T79I point mutation in ras-1. Alterations in light-regulated gene expression in the ras-1(bd) mutant suggests that the Neurospora photoreceptor WHITE COLLAR-1 is a target of RAS signaling, and increases in transcription of both wc-1 and fluffy show that regulators of conidiation are elevated in ras-1(bd). Comparison of ras-1(bd) with dominant active and dominant-negative ras-1 mutants and biochemical assays of RAS function indicate that RAS-1(bd) displays a modest enhancement of GDP/GTP exchange and no change in GTPase activity. Because the circadian clock in ras-1(bd) appears to be normal, ras-1(bd) apparently acts to amplify a subtle endogenous clock output signal under standard assay conditions. Reactive oxygen species (ROS), which can affect and be affected by RAS signaling, increase conidiation, suggesting a link between generation of ROS and RAS-1 signaling; surprisingly, however, ROS levels are not elevated in ras-1(bd). The data suggest that interconnected RAS- and ROS-responsive signaling pathways regulate the amplitude of circadian- and light-regulated gene expression in Neurospora.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Neurospora crassa/genética , Neurospora crassa/fisiologia , Proteínas ras/genética , Proteínas ras/metabolismo , Alelos , Sequência de Aminoácidos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/química , Genes Dominantes , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Espécies Reativas de Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Esporos Fúngicos/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas ras/química
5.
Eukaryot Cell ; 4(12): 2140-52, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16339731

RESUMO

Phytochromes (Phys) comprise a superfamily of red-/far-red-light-sensing proteins. Whereas higher-plant Phys that control numerous growth and developmental processes have been well described, the biochemical characteristics and functions of the microbial forms are largely unknown. Here, we describe analyses of the expression, regulation, and activities of two Phys in the filamentous fungus Neurospora crassa. In addition to containing the signature N-terminal domain predicted to covalently associate with a bilin chromophore, PHY-1 and PHY-2 contain C-terminal histidine kinase and response regulator motifs, implying that they function as hybrid two-component sensor kinases activated by light. A bacterially expressed N-terminal fragment of PHY-2 covalently bound either biliverdin or phycocyanobilin in vitro, with the resulting holoprotein displaying red-/far-red-light photochromic absorption spectra and a photocycle in vitro. cDNA analysis of phy-1 and phy-2 revealed two splice isoforms for each gene. The levels of the phy transcripts are not regulated by light, but the abundance of the phy-1 mRNAs is under the control of the circadian clock. Phosphorylated and unphosphorylated forms of PHY-1 were detected; both species were found exclusively in the cytoplasm, with their relative abundances unaffected by light. Strains containing deletions of phy-1 and phy-2, either singly or in tandem, were not compromised in any known photoresponses in Neurospora, leaving their function(s) unclear.


Assuntos
Neurospora crassa/química , Neurospora crassa/metabolismo , Fitocromo/química , Fitocromo/genética , Fitocromo/metabolismo , Processamento Alternativo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Fúngicos , Ritmo Circadiano , Citoplasma/metabolismo , DNA Complementar/análise , DNA Complementar/genética , DNA Fúngico , Escherichia coli/genética , Éxons , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Ligação Genética , Genoma Fúngico , Histidina Quinase , Íntrons , Cinética , Luz , Dados de Sequência Molecular , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Neurospora crassa/efeitos da radiação , Fases de Leitura Aberta , Fosforilação , Fitocromo/isolamento & purificação , Pigmentos Biológicos/química , Pigmentos Biológicos/genética , Pigmentos Biológicos/isolamento & purificação , Pigmentos Biológicos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/isolamento & purificação , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
6.
Proc Natl Acad Sci U S A ; 100(10): 5914-9, 2003 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12714686

RESUMO

The biological clock of Neurospora crassa includes interconnected transcriptional and translational feedback loops that cause both the transcript and protein encoded by the frequency gene (frq) to undergo the robust daily oscillations in abundance, which are essential for clock function. To understand better the mechanism generating rhythmic frq transcript, reporter constructs were used to show that the oscillation in frq message is transcriptionally regulated, and a single cis-acting element in the frq promoter, the Clock Box (C box), is both necessary and sufficient for this rhythmic transcription. Nuclear protein extracts used in binding assays revealed that a White Collar (WC)-1- and WC-2-containing complex (WCC) binds to the C box in a time-of-day-specific manner. Overexpression of an ectopic copy of FRQ or addition of in vitro-generated FRQ resulted in reduced WCC binding to the C box. These data suggest that oscillations in frq transcript result from WCC binding to the frq promoter and activating transcription with subsequent changes in FRQ levels having an inverse effect on WCC binding. In this way rhythmic expression and turnover of FRQ drives the rhythm in its own transcription.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Neurospora crassa/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Ritmo Circadiano , Primers do DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Cinética , Dados de Sequência Molecular , Neurospora crassa/fisiologia , Plasmídeos , Mapeamento por Restrição , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Dedos de Zinco
7.
Novartis Found Symp ; 253: 184-98; discussion 102-9, 198-202, 281-4, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14712922

RESUMO

In Neurosporacrassa the FRQ/WC feedback loop has been shown to be central to the function of the circadian clock. Similar to other eukaryotic systems it is based on a transcription-translation PAS heterodimer type feedback. FRQ levels cycle with a period identical to that of the Neurospora circadian cycle and its expression is rapidly induced by light. A complex of White Collar 1 (WC-1) and White Collar 2 (WC-2) (the WCC) is required for the transcriptional activation of frq. The oscillation in frq message is transcriptionally regulated via a single necessary and sufficient cis-acting element in the frq promoter, the Clock-Box (CB) bound by WCC. Light-induction of frq transcription is mediated by WCC binding to two cis-acting elements (LREs) in the frq promoter. WC-1, with flavin adenine dinucleotide (FAD) as a cofactor, is the blue-light photoreceptor. The original description of a frq-null strain, frq9, (Loros et al 1986) included a description of oscillations in asexual conidial banding that occasionally appeared following 3 to 7 days of arrhythmic development now referred to as FLO for FRQ-less oscillator. Unlike the intact clock, FLO period is sensitive to media composition. We have identified a circadianly regulated gene whose mutation interferes with FLO even under temperature entrainment conditions. This same mutation affects the circadian clock in a frq+ background causing a shorter period length as well as temperature response defects. This gene may be an entry point to study the connection between the biological clock and other basic cellular mechanisms.


Assuntos
Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Neurospora crassa/genética , Neurospora crassa/fisiologia , Ritmo Circadiano/efeitos da radiação , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Genes Fúngicos , Luz , Modelos Biológicos , Neurospora crassa/efeitos da radiação , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/fisiologia , Fotorreceptores Microbianos/efeitos da radiação , Temperatura
8.
Science ; 297(5582): 815-9, 2002 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-12098706

RESUMO

In the fungus Neurospora crassa, the blue light photoreceptor(s) and signaling pathway(s) have not been identified. We examined light signaling by exploiting the light sensitivity of the Neurospora biological clock, specifically the rapid induction by light of the clock component frequency (frq). Light induction of frq is transcriptionally controlled and requires two cis-acting elements (LREs) in the frq promoter. Both LREs are bound by a White Collar-1 (WC-1)/White Collar-2 (WC-2)-containing complex (WCC), and light causes decreased mobility of the WCC bound to the LREs. The use of in vitro-translated WC-1 and WC-2 confirmed that WC-1, with flavin adenine dinucleotide as a cofactor, is the blue light photoreceptor that mediates light input to the circadian system through direct binding (with WC-2) to the frq promoter.


Assuntos
Ritmo Circadiano , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Neurospora crassa/genética , Neurospora crassa/metabolismo , Fotorreceptores Microbianos/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Ritmo Circadiano/efeitos da radiação , Cor , DNA Fúngico/genética , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Luz , Neurospora crassa/efeitos da radiação , Ligação Proteica , RNA Fúngico/genética , RNA Fúngico/metabolismo , Elementos de Resposta/genética , Transdução de Sinais , Ativação Transcricional/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA