Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 40, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351424

RESUMO

It has long been hypothesized that benthic motile pennate diatoms use phototaxis to optimize photosynthesis and minimize photoinhibitory damage by adjusting their position within vertical light gradients in coastal benthic sediments. However, experimental evidence to test this hypothesis remains inconclusive, mainly due to methodological difficulties in studying cell behavior and photosynthesis over realistic spatial microscale gradients of irradiance and cell position. In this study, a novel experimental approach was developed and used to test the hypothesis of photosynthesis optimization through motility, based on the combination of single-cell in vivo chlorophyll fluorometry and microfluidic chips. The approach allows the concurrent study of behavior and photosynthetic activity of individual cells of the epipelic diatom species Craspedostauros britannicus exposed to a light microgradient of realistic dimensions, simulating the irradiance and distance scales of light microgradients in benthic sediments. Following exposure to light, (i) cells explored their light environment before initiating light-directed motility; (ii) cells used motility to lower their light dose, when exposed to the highest light intensities; and (iii) motility was combined with reversible non-photochemical quenching, to allow cells to avoid photoinhibition. The results of this proof-of-concept study not only strongly support the photoprotective nature of photobehavior in the studied species but also revealed considerable variability in how individual cells reacted to a light microgradient. The experimental setup can be readily applied to study motility and photosynthetic light responses of other diatom species or natural assemblages, as well as other photoautotrophic motile microorganisms, broadening the toolset for experimental microbial ecology research.


Assuntos
Diatomáceas , Diatomáceas/fisiologia , Fotossíntese , Clorofila , Luz , Movimento Celular
2.
PeerJ ; 11: e15023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151292

RESUMO

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Assuntos
Recifes de Corais , Dinoflagellida , Variação Genética , Dinoflagellida/classificação , Dinoflagellida/genética , Filogenia , Consenso , Antozoários , Simbiose
3.
Photosynth Res ; 155(2): 177-190, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36463555

RESUMO

The production of reactive oxygen species (ROS) is an unavoidable consequence of oxygenic photosynthesis and represents a major cause of oxidative stress in phototrophs, having detrimental effects on the photosynthetic apparatus, limiting cell growth, and productivity. Several methods have been developed for the quantification of cellular ROS, however, most are invasive, requiring the destruction of the sample. Here, we present a new methodology that allows the concurrent quantification of ROS and photosynthetic activity, using the fluorochrome dichlorofluorescein (DCF) and in vivo chlorophyll a fluorescence, respectively. Both types of fluorescence were measured using an imaging Pulse Amplitude Modulation (PAM) fluorometer, modified by adding a UVA-excitation light source (385 nm) and a green bandpass emission filter (530 nm) to enable the sequential capture of red chlorophyll fluorescence and green DCF fluorescence in the same sample. The method was established on Phaeodactylum tricornutum Bohlin, an important marine model diatom species, by determining protocol conditions that permitted the detection of ROS without impacting photosynthetic activity. The utility of the method was validated by quantifying the effects of two herbicides (DCMU and methyl viologen) on the photosynthetic activity and ROS production in P. tricornutum and of light acclimation state in Navicula cf. recens Lange-Bertalot, a common benthic diatom. The developed method is rapid and non-destructive, allowing for the high-throughput screening of multiple samples over time.


Assuntos
Diatomáceas , Microalgas , Clorofila/metabolismo , Clorofila A/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microalgas/metabolismo , Fotossíntese/fisiologia , Estresse Oxidativo , Diatomáceas/metabolismo
4.
J Phycol ; 56(4): 923-940, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32267533

RESUMO

The Symbiodiniaceae are a family of marine dinoflagellates known mostly for their endosymbiotic interactions with invertebrates and protists, but facultatively and exclusively free-living life histories in this family are also evident. A recent systematic revision of the Symbiodiniaceae replaced the clade-based nomenclature of seven divergent lineages of "Symbiodinium" sensu lato with one based on formally described genera. The revised taxonomy was not extended to the whole group because type species to describe a new genus for each of the remaining clades and subclades were lacking. In an effort to characterize benthic habitats of symbiodiniaceans in sediments at Heron Island (Great Barrier Reef, Australia), we isolated >100 monoclonal Symbiodiniaceae cultures. Four of these belonged to Symbiodiniaceae 'subclade' Fr3, and three to Clade H, based on nucleotide sequence similarity (ITS2, LSU, cp23S, and mtCOB), representing the first cultures of these taxa. Based on these isolates, we propose two new genera: Freudenthalidium gen. nov. and Halluxium gen. nov., circumscribing Clades Fr3 and H, respectively. Three new species are described: Freudenthalidium heronense, F. endolithicum, and Halluxium pauxillum. Kofoidian tabulations of motile cells confirm previous observations that amphiesmal vesicle arrangements are generally conserved across the family. These descriptions are an important step toward completing the systematic revision of the Symbiodiniaceae. That this contribution was enabled by isolates from an endopsammic habitat highlights the potential of discovering new symbiodiniacean species in the environment, the study of which will lead to a deeper understanding of free-living versus symbiotic life histories in this ecologically important family of dinoflagellates.


Assuntos
Dinoflagellida , Austrália , Dinoflagellida/genética , Filogenia
5.
ISME J ; 14(6): 1533-1546, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32203119

RESUMO

Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites encase the calcifying community as endolithic cells, pointing at an autoendolithic niche of symbiotic dinoflagellates, and provide a rare opportunity to study the role of bacteria in bacterial-algal calcification, as symbiodiniacean cultures display either distinct symbiolite-producing (SP) or non-symbiolite-producing (NP) phenotypes. Using Illumina sequencing, we found that the bacterial communities of SP and NP cultures differed significantly in the relative abundance of 23 genera, 14 families, and 2 phyla. SP cultures were rich in biofilm digesters from the phylum Planctomycetes and their predicted metagenomes were enriched in orthologs related to biofilm formation. In contrast, NP cultures were dominated by biofilm digesters from the Bacteroidetes, and were inferred as enriched in proteases and nucleases. Functional assays confirmed the potential of co-cultures and bacterial isolates to produce biofilms and point at acidic polysaccharides as key stimulators for mineral precipitation. Hence, bacteria appear to influence symbiolite formation primarily through their biofilm-producing and modifying activity and we anticipate that symbiolite formation, as a low-complexity in vitro model, will significantly advance our understanding of photosynthesis-induced microbial calcification processes.


Assuntos
Bactérias/metabolismo , Fotossíntese/fisiologia , Bacteroidetes , Biofilmes , Dinoflagellida , Metagenoma , Simbiose
6.
PeerJ ; 6: e5589, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202661

RESUMO

The responses of photosynthetic organisms to light stress are of interest for both fundamental and applied research. Functional traits related to the photoinhibition, the light-induced loss of photosynthetic efficiency, are particularly interesting as this process is a key limiting factor of photosynthetic productivity in algae and plants. The quantitative characterization of light responses is often time-consuming and calls for cost-effective high throughput approaches that enable the fast screening of multiple samples. Here we present a novel illumination system based on the concept of 'multi-actinic imaging' of in vivo chlorophyll fluorescence. The system is based on the combination of an array of individually addressable low power RGBW LEDs and custom-designed well plates, allowing for the independent illumination of 64 samples through the digital manipulation of both exposure duration and light intensity. The illumination system is inexpensive and easily fabricated, based on open source electronics, off-the-shelf components, and 3D-printed parts, and is optimized for imaging of chlorophyll fluorescence. The high-throughput potential of the system is illustrated by assessing the functional diversity in light responses of marine macroalgal species, through the fast and simultaneous determination of kinetic parameters characterizing the response to light stress of multiple samples. Although the presented illumination system was primarily designed for the measurement of phenotypic traits related to photosynthetic activity and photoinhibition, it can be potentially used for a number of alternative applications, including the measurement of chloroplast phototaxis and action spectra, or as the basis for microphotobioreactors.

7.
Front Microbiol ; 9: 998, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892272

RESUMO

Dinoflagellates in the genus Symbiodinium exhibit a variety of life styles, ranging from mutualistic endosymbioses with animal and protist hosts to free-living life styles. In culture, Symbiodinium spp. and naturally associated bacteria are known to form calcifying biofilms that produce so-called symbiolites, i.e., aragonitic microbialites that incorporate Symbiodinium as endolithic cells. In this study, we investigated (i) how algal growth and the combined physiological activity of these bacterial-algal associations affect the physicochemical macroenvironment in culture and the microenvironment within bacterial-algal biofilms, and (ii) how these interactions induce the formation of symbiolites. In batch culture, calcification typically commenced when Symbiodinium spp. growth approached stationary phase and when photosynthetic activity and its influence on pH and the carbonate system of the culture medium had already subsided, indicating that symbiolite formation is not simply a function of photosynthetic activity in the bulk medium. Physical disturbance of bacteria-algal biofilms, via repeated detaching and dispersing of the developing biofilm, generally impeded symbiolite formation, suggesting that the structural integrity of biofilms plays an important role in generating conditions conducive to calcification. Microsensor measurements of pH and O2 revealed a biofilm microenvironment characterized by high photosynthetic rates and by dynamic changes in photosynthesis and respiration with light intensity and culture age. Ca2+ microsensor measurements confirmed the significance of the biofilm microenvironment in inducing calcification, as photosynthesis within the biofilm induced calcification without the influence of batch culture medium and under environmentally relevant flow conditions. Furthermore, first quantitative data on calcification from 26 calcifying cultures enabled a first broad comparison of Symbiodinium-induced bacterial-algal calcification with other calcification processes. Our findings support the idea that symbiolite formation is a typical, photosynthesis-induced, bacterial-algal calcification process that is likely to occur under natural conditions.

8.
J Eukaryot Microbiol ; 65(4): 505-517, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29316019

RESUMO

Dinoflagellates of the genus Symbiodinium live in symbiosis with many invertebrates, including reef-building corals. Hosts maintain this symbiosis through continuous regulation of Symbiodinium cell density via expulsion and degradation (postmitotic) and/or constraining cell growth and division through manipulation of the symbiont cell cycle (premitotic). Importance of premitotic regulation is unknown since little data exists on cell cycles for the immense genetic diversity of Symbiodinium. We therefore examined cell cycle progression for several distinct SymbiodiniumITS2-types (B1, C1, D1a). All types exhibited typical microalgal cell cycle progression, G1 phase through to S phase during the light period, and S phase to G2 /M phase during the dark period. However, the proportion of cells in these phases differed between strains and reflected differences in growth rates. Undivided larger cells with 3n DNA content were observed especially in type D1a, which exhibited a distinct cell cycle pattern. We further compared cell cycle patterns under different growth light intensities and thermal regimes. Whilst light intensity did not affect cell cycle patterns, heat stress inhibited cell cycle progression and arrested all strains in G1 phase. We discuss the importance of understanding Symbiodinium functional diversity and how our findings apply to clarify stability of host-Symbiodinium symbioses.


Assuntos
Antozoários/fisiologia , Ciclo Celular , Microalgas/fisiologia , Microalgas/efeitos da radiação , Animais , Antozoários/parasitologia , Luz , Microalgas/classificação , Microalgas/citologia , Simbiose , Temperatura
10.
Proc Natl Acad Sci U S A ; 112(19): 6158-63, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918367

RESUMO

Dinoflagellates of the genus Symbiodinium are commonly recognized as invertebrate endosymbionts that are of central importance for the functioning of coral reef ecosystems. However, the endosymbiotic phase within Symbiodinium life history is inherently tied to a more cryptic free-living (ex hospite) phase that remains largely unexplored. Here we show that free-living Symbiodinium spp. in culture commonly form calcifying bacterial-algal communities that produce aragonitic spherulites and encase the dinoflagellates as endolithic cells. This process is driven by Symbiodinium photosynthesis but occurs only in partnership with bacteria. Our findings not only place dinoflagellates on the map of microbial-algal organomineralization processes but also point toward an endolithic phase in the Symbiodinium life history, a phenomenon that may provide new perspectives on the biology and ecology of Symbiodinium spp. and the evolutionary history of the coral-dinoflagellate symbiosis.


Assuntos
Antozoários/microbiologia , Bactérias , Cálcio/química , Dinoflagellida/fisiologia , Simbiose , Ácidos/química , Azul Alciano/química , Animais , Antibacterianos/química , Biofilmes , Calibragem , Ecossistema , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Dados de Sequência Molecular , Fotossíntese , Complexo de Proteína do Fotossistema II/fisiologia , Água/química
11.
PLoS One ; 6(10): e26817, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046369

RESUMO

BACKGROUND: Codon pair usage (codon context) is a species specific gene primary structure feature whose evolutionary and functional roles are poorly understood. The data available show that codon-context has direct impact on both translation accuracy and efficiency, but one does not yet understand how it affects these two translation variables or whether context biases shape gene evolution. METHODOLOGIES/PRINCIPAL FINDINGS: Here we study codon-context biases using a set of 72 orthologous highly conserved genes from bacteria, archaea, fungi and high eukaryotes to identify 7 distinct groups of codon context rules. We show that synonymous mutations, i.e., neutral mutations that occur in synonymous codons of codon-pairs, are selected to maintain context biases and that non-synonymous mutations, i.e., non-neutral mutations that alter protein amino acid sequences, are also under selective pressure to preserve codon-context biases. CONCLUSIONS: Since in vivo studies provide evidence for a role of codon context on decoding fidelity in E. coli and for decoding efficiency in mammalian cells, our data support the hypothesis that, like codon usage, codon context modulates the evolution of gene primary structure and fine tunes the structure of open reading frames for high genome translational fidelity and efficiency in the 3 domains of life.


Assuntos
Códon/genética , Modelos Genéticos , Mutação , Especificidade da Espécie , Evolução Biológica , Biossíntese de Proteínas
12.
J Phycol ; 44(5): 1116-25, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27041708

RESUMO

In recent years, two new approaches have been introduced in genetic studies of phytoplankton species. One is the application of highly polymorphic microsatellite markers, which allow detailed population genetic studies; the other is the development of methods that enable the direct genetic characterization of single cells as an alternative to clonal cultures. The aim of this study was to combine these two approaches in a method that would allow microsatellite genotyping of single phytoplankton cells, providing a novel tool for high-resolution population genetic studies. The dinoflagellate species Lingulodinium polyedrum (F. Stein) J. D. Dodge was selected as a model organism to develop this novel approach. The method we describe here is based on several key developments: (i) a simple and efficient DNA extraction method for single cells, (ii) the characterization of microsatellite markers for L. polyedrum, (iii) a protocol for the species identification of single cells through the analysis of partial rRNA gene sequences, and (iv) a two-step multiplex PCR protocol for the simultaneous amplification of microsatellite markers and partial rRNA gene sequences from single cells. Our protocol allowed the amplification of up to six microsatellite loci together with either the complete ITS1-5.8S-ITS2 region or a partial 18S region of the ribosomal gene of L. polyedrum from single motile cells and resting cysts. This article describes and evaluates the developed approach and discusses its significance for population genetic studies of L. polyedrum and other phytoplankton species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA