Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Folia Neuropathol ; 62(1): 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741432

RESUMO

Polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs) are dominant environmental and food contaminants. Tetrabromobisphenol A (TBBPA) is the most widely used BFR in the world to improve the fire safety of laminates in electrical and electronic equipment. Aroclor 1254, one of the PCBs, is widely distributed in the environment due to its extensive use in industrial applications around the world. Both groups of substances are potent toxicants. There is also increasing evidence that they have neurotoxic effects. In this study we tested the pro-inflammatory effects of Aroclor 1254 and TBBPA based on markers of microglial reactivity and levels of pro-inflammatory factors in the brain of immature rats. Aroclor 1254 or TBBPA were administered to the rats by oral gavage for two weeks at a dose of 10 mg/kg b.w. Both light and electron microscopy studies revealed features indicative of microglia activation in brains of exposed rats. Morphological changes were associated with overexpression of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Analysis of cytokine/chemokine array revealed significant secretion of inflammatory mediators following exposure to both TBBPA and Aroclor 1254, which was stronger in the cerebellum than in the forebrain of exposed immature rats. The results indicate a pro-inflammatory profile of microglia activation as one of the neurotoxic mechanisms of both examined toxicants.


Assuntos
Microglia , Síndromes Neurotóxicas , Bifenil Polibromatos , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Bifenil Polibromatos/toxicidade , Ratos , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/etiologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/metabolismo , Masculino , Retardadores de Chama/toxicidade , Ratos Wistar
2.
Am J Pathol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705380

RESUMO

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome that is most commonly triggered by infection-related inflammation. Lung pericytes can respond to infection and act as immune and proangiogenic cells; moreover, these cells can differentiate into myofibroblasts in nonresolving ARDS and contribute to the development of pulmonary fibrosis. Here, we aimed to characterize the role of lung cells, which present characteristics of pericytes, such as peri-endothelial location and expression of a panel of specific markers. To study their role in ARDS, we used a murine model of lipopolysaccharide (LPS)-induced resolving ARDS. We confirmed the development of ARDS after LPS instillation, which was resolved 14 days after onset. Using immunofluorescence and flow cytometry, we observed early expansion of neural-glial antigen 2+ ß-type platelet-derived growth factor receptor+ pericytes in murine lungs with loss of CD31+ ß-type platelet-derived growth factor receptor+ endothelial cells. These changes were accompanied by specific changes in lung structure and loss of vascular integrity. On day 14 after ARDS onset, the composition of pericytes and endothelial cells returned to baseline values. LPS-induced ARDS activated NOTCH signaling in lung pericytes, the inhibition of which during LPS stimulation reduced the expression of its downstream target genes, pericyte markers, and angiogenic factors. Together, lung pericytes in response to inflammatory injury activate NOTCH signaling that supports their maintenance and in turn can contribute to recovery of the microvascular endothelium.

3.
Brain Pathol ; : e13255, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504469

RESUMO

Premature birth or complications during labor can cause temporary disruption of cerebral blood flow, often followed by long-term disturbances in brain development called hypoxic-ischemic (HI) encephalopathy. Diffuse damage to the white matter is the most frequently detected pathology in this condition. We hypothesized that oligodendrocyte progenitor cell (OPC) differentiation disturbed by mild neonatal asphyxia may affect the viability, maturation, and physiological functioning of oligodendrocytes. To address this issue, we studied the effect of temporal HI in the in vivo model in P7 rats with magnetic resonance imaging (MRI), microscopy techniques and biochemical analyses. Moreover, we recreated the injury in vitro performing the procedure of oxygen-glucose deprivation on rat neonatal OPCs to determine its effect on cell viability, proliferation, and differentiation. In the in vivo model, MRI evaluation revealed changes in the volume of different brain regions, as well as changes in the directional diffusivity of water in brain tissue that may suggest pathological changes to myelinated neuronal fibers. Hypomyelination was observed in the cortex, striatum, and CA3 region of the hippocampus. Severe changes to myelin ultrastructure were observed, including delamination of myelin sheets. Interestingly, shortly after the injury, an increase in oligodendrocyte proliferation was observed, followed by an overproduction of myelin proteins 4 weeks after HI. Results verified with the in vitro model indicate, that in the first days after damage, OPCs do not show reduced viability, intensively proliferate, and overexpress myelin proteins and oligodendrocyte-specific transcription factors. In conclusion, despite the increase in oligodendrocyte proliferation and myelin protein expression after HI, the production of functional myelin sheaths in brain tissue is impaired. Presented study provides a detailed description of oligodendrocyte pathophysiology developed in an effect of HI injury, resulting in an altered CNS myelination. The described models may serve as useful tools for searching and testing effective of effective myelination-supporting therapies for HI injuries.

4.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37108467

RESUMO

Tuberous sclerosis complex (TSC) is a rare genetic multisystem disorder caused by loss-of-function mutations in the tumour suppressors TSC1/TSC2, both of which are negative regulators of the mammalian target of rapamycin (mTOR) kinase. Importantly, mTOR hyperactivity seems to be linked with the pathobiology of autism spectrum disorders (ASD). Recent studies suggest the potential involvement of microtubule (MT) network dysfunction in the neuropathology of "mTORopathies", including ASD. Cytoskeletal reorganization could be responsible for neuroplasticity disturbances in ASD individuals. Thus, the aim of this work was to study the effect of Tsc2 haploinsufficiency on the cytoskeletal pathology and disturbances in the proteostasis of the key cytoskeletal proteins in the brain of a TSC mouse model of ASD. Western-blot analysis indicated significant brain-structure-dependent abnormalities in the microtubule-associated protein Tau (MAP-Tau), and reduced MAP1B and neurofilament light (NF-L) protein level in 2-month-old male B6;129S4-Tsc2tm1Djk/J mice. Alongside, pathological irregularities in the ultrastructure of both MT and neurofilament (NFL) networks as well as swelling of the nerve endings were demonstrated. These changes in the level of key cytoskeletal proteins in the brain of the autistic-like TSC mice suggest the possible molecular mechanisms responsible for neuroplasticity alterations in the ASD brain.


Assuntos
Transtorno do Espectro Autista , Esclerose Tuberosa , Camundongos , Animais , Masculino , Transtorno do Espectro Autista/genética , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas do Citoesqueleto/genética , Microtúbulos/metabolismo , Mamíferos/metabolismo
5.
Nanomedicine (Lond) ; 18(3): 233-258, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37078419

RESUMO

Background: Modern medicine requires intensive research to find new diagnostic and therapeutic solutions. Recently, upconverting nanoparticles (UCNPs) doped with lanthanide ions have attracted significant attention. Methods: The efficient internalization of UCNPs by cells was confirmed, and their precise cellular localization was determined by electron microscopy and confocal studies. Results: UCNPs colocalized only with specific organelles, such as early endosomes, late endosomes and lysosomes. Furthermore, experiments with chemical inhibitors confirmed the involvement of endocytosis in UCNPs internalization and helped select several mechanisms involved in internalization. Exposure to selected UCNPs concentrations did not show significant cytotoxicity, induction of oxidative stress or ultrastructural changes in cells. Conclusion: This study suggests that UCNPs offer new diagnostic options for biomedical infrared imaging.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Distribuição Tecidual , Elementos da Série dos Lantanídeos/química , Diagnóstico por Imagem , Nanopartículas/química
6.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674638

RESUMO

In recent years, rare-earth-doped upconverting nanoparticles (UCNPs) have been widely used in different life sciences due to their unique properties. Nanoparticles have become a multifunctional and promising new approach to neurobiological disorders and have shown extraordinary application potential to overcome the problems related to conventional treatment strategies. This study evaluated the internalization mechanisms, bio-distribution, and neurotoxicity of NaYF4:20%Yb3+,2%Er3+ UCNPs in rat organotypic hippocampal slices. TEM results showed that UCNPs were easily internalized by hippocampal cells and co-localized with selected organelles inside neurons and astrocytes. Moreover, the UCNPs were taken into the neurons via clathrin- and caveolae-mediated endocytosis. Propidium iodide staining and TEM analysis did not confirm the adverse effects of UCNPs on hippocampal slice viability and morphology. Therefore, UCNPs may be a potent tool for bio-imaging and testing new therapeutic strategies for brain diseases in the future.


Assuntos
Diagnóstico por Imagem , Nanopartículas , Ratos , Animais , Neurônios , Clatrina
7.
Biochim Biophys Acta Mol Basis Dis ; 1869(3): 166633, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36566873

RESUMO

Transient ischemic attacks (TIA) result from a temporary blockage in blood circulation in the brain. As TIAs cause disabilities and often precede full-scale strokes, the effects of TIA are investigated to develop neuroprotective therapies. We analyzed changes in mitochondrial network dynamics, mitophagy and biogenesis in sections of gerbil hippocampus characterized by a different neuronal survival rate after 5-minute ischemia-reperfusion (I/R) insult. Our research revealed a significantly greater mtDNA/nDNA ratio in CA2-3, DG hippocampal regions (5.8 ± 1.4 vs 3.6 ± 0.8 in CA1) that corresponded to a neuronal resistance to I/R. During reperfusion, an increase of pro-fission (phospho-Ser616-Drp1/Drp1) and pro-fusion proteins (1.6 ± 0.5 and 1.4 ± 0.3 for Mfn2 and Opa1, respectively) was observed in CA2-3, DG. Selective autophagy markers, PINK1 and SQSTM1/p62, were elevated 24-96 h after I/R and accompanied by significant elevation of transcription factors proteins PGC-1α and Nrf1 (1.2 ± 0.4, 1.78 ± 0.6, respectively) and increased respiratory chain proteins (e.g., 1.5 ± 0.3 for complex IV at I/R 96 h). Contrastingly, decreased enzymatic activity of citrate synthase, reduced Hsp60 protein level and electron transport chain subunits (0.88 ± 0.03, 0.74 ± 0.1 and 0.71 ± 0.1 for complex IV at I/R 96 h, respectively) were observed in I/R-vulnerable CA1. The phospho-Ser616-Drp1/Drp1 was increased while Mfn2 and total Opa1 reduced to 0.88 ± 0.1 and 0.77 ± 0.17, respectively. General autophagy, measured as LC3-II/I ratio, was activated 3 h after reperfusion reaching 2.37 ± 0.9 of control. This study demonstrated that enhanced mitochondrial fusion, followed by late and selective mitophagy and mitochondrial biogenesis might together contribute to reduced susceptibility to TIA.


Assuntos
Ataque Isquêmico Transitório , Dinâmica Mitocondrial , Animais , Gerbillinae , Ataque Isquêmico Transitório/genética , Ataque Isquêmico Transitório/metabolismo , Hipocampo/metabolismo , Isquemia/metabolismo
8.
J Pers Med ; 12(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35207664

RESUMO

Understanding the meaning of parvovirus B19 (PB19V) in an etiology of dilated cardiomyopathy (DCM) is difficult. Viruses change the dynamics of the mitochondria by interfering with the mitochondrial process/function, causing the alteration of mitochondrial morphology. In this study, the ultrastructural changes in the mitochondria in endomyocardial biopsy (EMB) samples from patients with DCM and PB19V were determined. METHODS: The PB19V evaluation was performed in EMB specimens by real-time PCR in 20 patients (age: 28 ± 6 years). The biopsy specimens were examined by histo- and immunohistochemistry to detect the inflammatory response. The ultrastructural features of the mitochondria were evaluated by electron microscopy. RESULTS: The presence of PB19V in the heart tissue without the presence of inflammatory process, defined according to Dallas and immunohistochemical criteria, was associated with ultrastructural changes in the mitochondria. Distinctive ultrastructural pathologies were indicated, such as the presence of mitochondria in the vicinity of the expanded sarcoplasmic reticulum with amorphous material, blurred structure of mitochondria, interrupted outer mitochondrial membrane and mitophagy. CONCLUSIONS: Extending diagnostics with ultrastructural analysis of biopsy samples provides new knowledge of the changes associated with the presence of PB19V in the heart tissue. The observed changes can be a basis for searching for the damage mechanisms, as well as for new therapeutic solutions.

9.
J Biomed Mater Res B Appl Biomater ; 110(2): 438-449, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34323358

RESUMO

Current strategies in urinary bladder augmentation include use of gastrointestinal segments, however, the technique is associated with inevitable complications. An acellular biologic scaffold seems to be a promising option for urinary bladder augmentation. The aim of this study was to evaluate the utility of bladder acellular matrix (BAM) for reconstruction of clinically significant large urinary bladder wall defects in a long-term porcine model. Urinary bladders were harvested from 10 pig donors. Biological scaffolds were prepared by chemically removing all cellular components from urinary bladder tissue. A total of 10 female pigs underwent hemicystectomy and subsequent bladder reconstruction with BAM. The follow-up study was 6 months. Reconstructed bladders were subjected to radiological, macroscopic, histological, immunohistochemical, and molecular evaluations. Six out of ten animals survived the 6-month follow-up period. Four pigs died during observation due to mechanical failure of the scaffold, anastomotic dehiscence between the scaffold and native bladder tissue, or occluded catheter. Tissue engineered bladder function was normal without any signs of postvoid residual urine in the bladder or upper urinary tracts. Macroscopically, graft shrinkage was observed. Urothelium completely covered the luminal surface of the graft. Smooth muscle regeneration was observed mainly in the peripheral graft region and gradually decreased toward the center of the graft. Expression of urothelial, smooth muscle, blood vessel, and nerve markers were lower in the reconstructed bladder wall compared to the native bladder. BAM seems to be a promising biomaterial for reconstruction of large urinary bladder wall defects. Further research on cell-seeded BAM to enhance urinary bladder regeneration is required.


Assuntos
Produtos Biológicos , Bexiga Urinária , Animais , Produtos Biológicos/metabolismo , Modelos Animais de Doenças , Feminino , Seguimentos , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais , Bexiga Urinária/fisiologia , Bexiga Urinária/cirurgia
10.
Cells ; 10(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34831191

RESUMO

BACKGROUND: Dysfunction of glia contributes to the deterioration of the central nervous system in a wide array of neurological disorders, thus global replacement of glia is very attractive. Human glial-restricted precursors (hGRPs) transplanted intraventricularly into neonatal mice extensively migrated and rescued the lifespan in half of the studied mice, whereas mouse GRPs (mGRPs) presented no therapeutic benefit. We studied in the same experimental setting canine GRPs (cGRP) to determine whether their therapeutic potential falls between hGRPs and mGRPs. Additional motivation for the selection of cGRPs was a potential for use in veterinary medicine. METHODS: cGRPs were extracted from the brain of dog fetuses. The cells were transplanted into the anterior or posterior aspect of the lateral ventricle (LV) of neonatal, immunodeficient, dysmyelinated mice (Mbpshi, Rag2 KO; shiv/rag2). Outcome measures included early cell biodistribution, animal survival and myelination assessed with MRI, immunohistochemistry and electron microscopy. RESULTS: Grafting of cGRP into posterior LV significantly extended animal survival, whereas no benefit was observed after anterior LV transplantation. In contrast, myelination of the corpus callosum was more prominent in anteriorly transplanted animals. CONCLUSIONS: The extended survival of animals after transplantation of cGRPs could be explained by the vicinity of the transplant near the brain stem.


Assuntos
Doenças Desmielinizantes/terapia , Bainha de Mielina/patologia , Células-Tronco Neurais/transplante , Neuroglia/patologia , Animais , Axônios/patologia , Axônios/ultraestrutura , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Cães , Feminino , Imageamento por Ressonância Magnética , Masculino , Camundongos Knockout , Bainha de Mielina/ultraestrutura , Células-Tronco Neurais/metabolismo , Análise de Sobrevida
11.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576223

RESUMO

Tuberous sclerosis complex (TSC) is a rare, multi-system genetic disease with serious neurological and mental symptoms, including autism. Mutations in the TSC1/TSC2 genes lead to the overactivation of mTOR signalling, which is also linked to nonsyndromic autism. Our aim was to analyse synaptic pathology in a transgenic model of TSC: two-month-old male B6;129S4-Tsc2tm1Djk/J mice with Tsc2 haploinsufficiency. Significant brain-region-dependent alterations in the expression of several synaptic proteins were identified. The most prominent changes were observed in the immunoreactivity of presynaptic VAMP1/2 (ca. 50% increase) and phospho-synapsin-1 (Ser62/67) (ca. 80% increase). Transmission electron microscopy demonstrated serious ultrastructural abnormalities in synapses such as a blurred structure of synaptic density and a significantly increased number of synaptic vesicles. The impairment of synaptic mitochondrial ultrastructure was represented by excessive elongation, swelling, and blurred crista contours. Polyribosomes in the cytoplasm and swollen Golgi apparatus suggest possible impairment of protein metabolism. Moreover, the delamination of myelin and the presence of vacuolar structures in the cell nucleus were observed. We also report that Tsc2+/- mice displayed increased brain weights and sizes. The behavioural analysis demonstrated the impairment of memory function, as established in the novel object recognition test. To summarise, our data indicate serious synaptic impairment in the brains of male Tsc2+/- mice.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Sinapses , Animais , Animais Geneticamente Modificados , Transtorno do Espectro Autista/genética , Comportamento Animal , Encéfalo/fisiologia , Núcleo Celular/metabolismo , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Densitometria , Haploinsuficiência , Hipocampo/metabolismo , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Tamanho do Órgão , Fosforilação , RNA Mensageiro/metabolismo , Reconhecimento Psicológico , Transdução de Sinais , Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética
12.
FASEB J ; 35(7): e21588, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34169573

RESUMO

Ammonia is considered the main pathogenic toxin in hepatic encephalopathy (HE). However, the molecular mechanisms involved have been disputed. As altered glutamatergic and GABAergic neurotransmission has been reported in HE, we investigated whether four members of the solute carrier 38 (Slc38) family of amino acid transporters-involved in the replenishment of glutamate and GABA-contribute to ammonia neurotoxicity in HE. We show that ammonium ion exerts multiple actions on the Slc38 transporters: It competes with glutamine for the binding to the system N transporters Slc38a3 and Slc38a5, consequently inhibiting bidirectional astroglial glutamine transport. It also competes with H+ , Na+ , and K+ for uncoupled permeation through the same transporters, which may perturb astroglial intracellular pH, membrane potential, and K+ -buffering. Knockdown of Slc38a3 in mice results in cerebral cortical edema and disrupted neurotransmitter synthesis mimicking events contributing to HE development. Finally, in a mouse model of acute liver failure (ALF), we demonstrate the downregulation of Slc38a3 protein, impeded astroglial glutamine release, and cytotoxic edema. Altogether, we demonstrate contribution of Slc38 transporters to the ammonia-induced impairment of glutamine recycling between astrocytes and neurons, a phenomenon underlying acute ammonia neurotoxicity in the setting of ALF.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Amônia/toxicidade , Astrócitos/patologia , Edema Encefálico/etiologia , Córtex Cerebral/patologia , Doença Hepática Induzida por Substâncias e Drogas/complicações , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Azoximetano/toxicidade , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Córtex Cerebral/metabolismo , Feminino , Glutamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transmissão Sináptica , Xenopus laevis
13.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802775

RESUMO

Silver nanoparticles (AgNPs) are the one of the most extensively used nanomaterials. The strong antimicrobial properties of AgNPs have led to their use in a wide range of medical and consumer products. Although the neurotoxicity of AgNPs has been confirmed, the molecular mechanisms have not been extensively studied, particularly in immature organisms. Based on information gained from previous in vitro studies, in the present work, we examine whether ionotropic NMDA glutamate receptors contribute to AgNP-induced neurotoxicity in an animal model of exposure. In brains of immature rats subjected to a low dose of AgNPs, we identified ultrastructural and molecular alterations in the postsynaptic region of synapses where NMDA receptors are localized as a multiprotein complex. We revealed decreased expression of several NMDA receptor complex-related proteins, such as GluN1 and GluN2B subunits, scaffolding proteins PSD95 and SynGAP, as well as neuronal nitric oxide synthase (nNOS). Elucidating the changes in NMDA receptor-mediated molecular mechanisms induced by AgNPs, we also identified downregulation of the GluN2B-PSD95-nNOS-cGMP signaling pathway which maintains LTP/LTD processes underlying learning and memory formation during development. This observation is accompanied by decreased density of NMDA receptors, as assessed by a radioligand binding assay. The observed effects are reversible over the post-exposure time. This investigation reveals that NMDA receptors in immature rats are a target of AgNPs, thereby indicating the potential health hazard for children and infants resulting from the extensive use of products containing AgNPs.


Assuntos
Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Nanopartículas Metálicas/toxicidade , Receptores de N-Metil-D-Aspartato/metabolismo , Prata/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/ultraestrutura , GMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Ligantes , Masculino , Nanopartículas Metálicas/ultraestrutura , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Subunidades Proteicas/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/ultraestrutura
14.
Nanotechnology ; 32(24)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33690193

RESUMO

Gd2O3:1% Er3+, 18% Yb3+,x% Mg2+(x = 0; 2.5; 4; 5; 6; 8;10; 20; 25; 50) and Gd2O3:1% Er3+, 18% Yb3+, 2,5% Mg2+,y% Li+(y = 0.5-2.5) nanoparticles were synthesized by homogenous precipitation method and calcined at 900 °C for 3 h in air atmosphere. Powder x-ray diffraction, scanning electron microscopy, cathodoluminescence, transmission electron microscopy, energy dispersive x-ray spectroscopy and photoluminescence techniques were employed to characterize the obtained nanoparticles. We observed a 8-fold increase in red luminescence for samples suspended in DMSO solution for 2.5% of Mg2+doping. The x-ray analysis shows that for the concentration of 2.5% Mg, the size of the crystallites in the NPs is the largest, which is mainly responsible for the increase in the intensity of the upconversion luminescence. But the addition of Li+ions did not improve the luminescence of the upconversion due to decreasing of crystallites size of the NPs. Synthesized nanomaterials with very effective upconverting luminescence, can act as luminescent markers inin vivoimaging. The cytotoxicity of the nanoparticles was evaluated on the 4T1 cell line for the first time.

15.
J Phys Chem C Nanomater Interfaces ; 124(12): 6871-6883, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32952770

RESUMO

Magnetic nanoparticles of Fe3O4 doped by different amounts of Y3+ (0, 0.1, 1, and 10%) ions were designed to obtain maximum heating efficiency in magnetic hyperthermia for cancer treatment. Single-phase formation was evident by X-ray diffraction measurements. An improved magnetization value was obtained for the Fe3O4 sample with 1% Y3+ doping. The specific absorption rate (SAR) and intrinsic loss of power (ILP) values for prepared colloids were obtained in water. The best results were estimated for Fe3O4 with 0.1% Y3+ ions (SAR = 194 W/g and ILP = 1.85 nHm2/kg for a magnetic field of 16 kA/m with the frequency of 413 kHz). The excellent biocompatibility with low cell cytotoxicity of Fe3O4:Y nanoparticles was observed. Immediately after magnetic hyperthermia treatment with Fe3O4:0.1%Y, a decrease in 4T1 cells' viability was observed (77% for 35 µg/mL and 68% for 100 µg/mL). These results suggest that nanoparticles of Fe3O4 doped by Y3+ ions are suitable for biomedical applications, especially for hyperthermia treatment.

16.
Int J Mol Sci ; 21(11)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521803

RESUMO

Maternal immune activation (MIA), induced by infection during pregnancy, is an important risk factor for neuro-developmental disorders, such as autism. Abnormal maternal cytokine signaling may affect fetal brain development and contribute to neurobiological and behavioral changes in the offspring. Here, we examined the effect of lipopolysaccharide-induced MIA on neuro-inflammatory changes, as well as synaptic morphology and key synaptic protein level in cerebral cortex of adolescent male rat offspring. Adolescent MIA offspring showed elevated blood cytokine levels, microglial activation, increased pro-inflammatory cytokines expression and increased oxidative stress in the cerebral cortex. Moreover, pathological changes in synaptic ultrastructure of MIA offspring was detected, along with presynaptic protein deficits and down-regulation of postsynaptic scaffolding proteins. Consequently, ability to unveil MIA-induced long-term alterations in synapses structure and protein level may have consequences on postnatal behavioral changes, associated with, and predisposed to, the development of neuropsychiatric disorders.


Assuntos
Córtex Cerebral/imunologia , Córtex Cerebral/metabolismo , Encefalite/etiologia , Encefalite/metabolismo , Imunidade , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Sinapses/metabolismo , Fatores Etários , Animais , Transtorno Autístico/etiologia , Transtorno Autístico/metabolismo , Transtorno Autístico/psicologia , Comportamento Animal , Córtex Cerebral/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Encefalite/patologia , Feminino , Lipopolissacarídeos/efeitos adversos , Exposição Materna/efeitos adversos , Estresse Oxidativo , Fenótipo , Gravidez , Ratos
17.
Neurotox Res ; 38(3): 650-664, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32588355

RESUMO

Extensive incorporation of silver nanoparticles (AgNPs) into many medical and consumer products has raised concerns about biosafety. Since nanosilver accumulates persistently in the central nervous system, it is important to assess its neurotoxic impacts. We investigated a model of prolonged exposure of adult rats to a low environmentally relevant dose of AgNPs (0.2 mg/kg b.w.). Ultrastructural analysis revealed pathological alterations in mitochondria such as swelling and cristolysis. Besides, elongated forms of mitochondria were present. Level of adenosine triphosphate was not altered after exposure, although a partial drop of mitochondrial membrane potential was noted. Induction of autophagy with only early autophagic forms was observed in AgNP-exposed rat brains as evidenced by ultrastructural markers. Increased expression of two protein markers of autophagy, beclin 1 and microtubule-associated proteins 1A/1B light chain 3B (MAP LC3-II), was observed, indicating induction of autophagy. Expression of lysosome-related Rab 7 protein and cathepsin B did not change, suggesting inhibition of physiological flux of autophagy. Our results show that exposure to a low, environmentally relevant dose of AgNPs leads to induction of autophagy in adult rat brain in response to partial mitochondrial dysfunction and to simultaneous interfering with an autophagic pathway. The cell compensates for the defective autophagy mechanism via development of enhanced mitochondrial biodynamic.


Assuntos
Autofagia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Prata/toxicidade , Animais , Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Mitocôndrias/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
18.
Int J Mol Sci ; 21(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443651

RESUMO

Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental conditions categorized as synaptopathies. Environmental risk factors contribute to ASD aetiology. In particular, prenatal exposure to the anti-epileptic drug valproic acid (VPA) may increase the risk of autism. In the present study, we investigated the effect of prenatal exposure to VPA on the synaptic morphology and expression of key synaptic proteins in the hippocampus and cerebral cortex of young-adult male offspring. To characterize the VPA-induced autism model, behavioural outcomes, microglia-related neuroinflammation, and oxidative stress were analysed. Our data showed that prenatal exposure to VPA impaired communication in neonatal rats, reduced their exploratory activity, and led to anxiety-like and repetitive behaviours in the young-adult animals. VPA-induced pathological alterations in the ultrastructures of synapses accompanied by deregulation of key pre- and postsynaptic structural and functional proteins. Moreover, VPA exposure altered the redox status and expression of proinflammatory genes in a brain region-specific manner. The disruption of synaptic structure and plasticity may be the primary insult responsible for autism-related behaviour in the offspring. The vulnerability of specific synaptic proteins to the epigenetic effects of VPA may highlight the potential mechanisms by which prenatal VPA exposure generates behavioural changes.


Assuntos
Transtorno do Espectro Autista/induzido quimicamente , Microglia/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Sinapses/efeitos dos fármacos , Ácido Valproico/efeitos adversos , Animais , Anticonvulsivantes/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Inflamação , Masculino , Microglia/metabolismo , Microglia/patologia , Estresse Oxidativo , Gravidez , Ratos , Sinapses/patologia , Ácido Valproico/toxicidade
19.
Nanotechnology ; 31(22): 225711, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32032002

RESUMO

The paramagnetic Y3-0.02-x Er0.02Yb x Al5O12 (x = 0.02, 0.06, 0.10, 0.12, 0.18, 0.20) nanocrystals (NCs) were synthesized by the microwave-induced solution combustion method. The XRD, TEM and SEM techniques were applied to determine the NCs' structures and sizes. The XRD patterns confirmed that the NCs have for the most part a regular structure of the Y3Al5O12 (YAG) phase. The changes of the distance between donor Yb3+ (sensitizer) and acceptor Er3+ (activator) were realized by changing the donor's concentration with a constant amount of acceptor. Under 980 nm excitation, at room temperature, the NCs exhibited strong red emission near 660 and 675 nm, and green upconversion emission at 550 nm, corresponding to the intra 4f transitions of Er3+ (4F9/2, 2H11/2, 4S3/2) â†’ Er3+ (4I15/2). The strongest emission was observed in a sample containing 18% Yb3+ ions. The red and green emission intensities are respectively about 5 and 12 times higher as compared to NCs doped with 2% of Yb3+. In order to prove that the main factor responsible for the increase of the upconversion luminescence efficiency is reduction of the distance between Yb3+ and Er3+, we examined, for the first time the influence of hydrostatic pressure on luminescence and luminescence decay time of the radiative transitions inside donor ion. The decrease of both luminescence intensity and luminescence decay times, with increasing hydrostatic pressure was observed. After applying hydrostatic pressure to samples with e.g. 2% and 6% Yb3+, the distance between the donor and acceptor decreases. However, for higher concentrations of the donor, this distance is smaller, and this leads to the effective energy transfer to Er3+ ions. With increasing pressure, the maximum intensity of near infrared emission is observed at 1029, 1038 and 1047 nm, what corresponds to 2F5/2 â†’ 2F7/2 transition of Yb3+.

20.
Front Mol Neurosci ; 13: 555290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519375

RESUMO

Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders in offspring, but the pathomechanism is largely unknown. The aim of our study was to analyse the molecular mechanisms contributing to synaptic alterations in hippocampi of adolescent rats exposed prenatally to MIA. MIA was evoked in pregnant female rats by i.p. administration of lipopolysaccharide at gestation day 9.5. Hippocampi of offspring (52-53-days-old rats) were analysed using transmission electron microscopy (TEM), qPCR and Western blotting. Moreover, mitochondrial membrane potential, activity of respiratory complexes, and changes in glutathione system were measured. It was found that MIA induced changes in hippocampi morphology, especially in the ultrastructure of synapses, including synaptic mitochondria, which were accompanied by impairment of mitochondrial electron transport chain and decreased mitochondrial membrane potential. These phenomena were in agreement with increased generation of reactive oxygen species, which was evidenced by a decreased reduced/oxidised glutathione ratio and an increased level of dichlorofluorescein (DCF) oxidation. Activation of cyclin-dependent kinase 5, and phosphorylation of glycogen synthase kinase 3ß on Ser9 occurred, leading to its inhibition and, accordingly, to hypophosphorylation of microtubule associated protein tau (MAPT). Abnormal phosphorylation and dysfunction of MAPT, the manager of the neuronal cytoskeleton, harmonised with changes in synaptic proteins. In conclusion, this is the first study demonstrating widespread synaptic changes in hippocampi of adolescent offspring prenatally exposed to MIA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA