Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Talanta ; 276: 126221, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776768

RESUMO

Streptococcus pyogenes (Group A Streptococcus; GAS) is a Gram-positive bacterium responsible for substantial human mortality and morbidity. Conventional diagnosis of GAS pharyngitis relies on throat swab culture, a low-throughput, slow, and relatively invasive 'gold standard'. While molecular approaches are becoming increasingly utilized, the potential of saliva as a diagnostic fluid for GAS infection remains largely unexplored. Here, we present a novel, high-throughput, sensitive, and robust speB qPCR assay that reliably detects GAS in saliva using innovative 3base™ technology (Genetic Signatures Limited, Sydney, Australia). The assay has been validated on baseline, acute, and convalescent saliva samples generated from the Controlled Human Infection for Vaccination Against Streptococcus (CHIVAS-M75) trial, in which healthy adult participants were challenged with emm75 GAS. In these well-defined samples, our high-throughput assay outperforms throat culture and conventional qPCR in saliva respectively, affirming the utility of the 3base™ platform, demonstrating the feasibility of saliva as a diagnostic biofluid, and paving the way for the development of novel non-invasive approaches for the detection of GAS and other oropharyngeal pathogens.

2.
J Biol Chem ; 300(2): 105623, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176650

RESUMO

Group A Streptococcal M-related proteins (Mrps) are dimeric α-helical-coiled-coil cell membrane-bound surface proteins. During infection, Mrp recruit the fragment crystallizable region of human immunoglobulin G via their A-repeat regions to the bacterial surface, conferring upon the bacteria enhanced phagocytosis resistance and augmented growth in human blood. However, Mrps show a high degree of sequence diversity, and it is currently not known whether this diversity affects the Mrp-IgG interaction. Herein, we report that diverse Mrps all bind human IgG subclasses with nanomolar affinity, with differences in affinity which ranged from 3.7 to 11.1 nM for mixed IgG. Using surface plasmon resonance, we confirmed Mrps display preferential IgG-subclass binding. All Mrps were found to have a significantly weaker affinity for IgG3 (p < 0.05) compared to all other IgG subclasses. Furthermore, plasma pulldown assays analyzed via Western blotting revealed that all Mrp were able to bind IgG in the presence of other serum proteins at both 25 °C and 37 °C. Finally, we report that dimeric Mrps bind to IgG with a 1:1 stoichiometry, enhancing our understanding of this important host-pathogen interaction.


Assuntos
Proteínas de Bactérias , Streptococcus pyogenes , Humanos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Imunoglobulina G/metabolismo , Streptococcus pyogenes/metabolismo
3.
Microbiology (Reading) ; 169(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748538

RESUMO

Group A Streptococcus (GAS) M and M-like proteins are essential virulence factors and represent the primary epidemiological marker of this pathogen. Protein sequences encoding 1054 M, Mrp and Enn proteins, from 1668 GAS genomes, were analysed by SplitsTree4, partitioning around medoids and co-occurrence. The splits network and groups-based analysis of all M and M-like proteins revealed four large protein groupings, with multiple evolutionary histories as represented by multiple edges for most splits, leading to 'M-family-groups' (FG) of protein sequences: FG I, Mrp; FG II, M protein and Protein H; FG III, Enn; and FG IV, M protein. M and Enn proteins formed two groups with nine sub-groups and Mrp proteins formed four groups with ten sub-groups. Discrete co-occurrence of M and M-like proteins were identified suggesting that while dynamic, evolution may be constrained by a combination of functional and virulence attributes. At a granular level, four distinct family-groups of M, Enn and Mrp proteins are observable, with Mrp representing the most genetically distinct of the family-group of proteins. While M and Enn protein families generally group into three distinct family-groups, horizontal and vertical gene flow between distinct GAS strains is ongoing.


Assuntos
Proteínas de Bactérias , Streptococcus pyogenes , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Fatores de Virulência/genética
4.
Nat Commun ; 13(1): 769, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140232

RESUMO

Streptococcus pyogenes causes at least 750 million infections and more than 500,000 deaths each year. No vaccine is currently available for S. pyogenes and the use of human challenge models offer unique and exciting opportunities to interrogate the immune response to infectious diseases. Here, we use high-dimensional flow cytometric analysis and multiplex cytokine and chemokine assays to study serial blood and saliva samples collected during the early immune response in human participants following challenge with S. pyogenes. We find an immune signature of experimental human pharyngitis characterised by: 1) elevation of serum IL-1Ra, IL-6, IFN-γ, IP-10 and IL-18; 2) increases in peripheral blood innate dendritic cell and monocyte populations; 3) reduced circulation of B cells and CD4+ T cell subsets (Th1, Th17, Treg, TFH) during the acute phase; and 4) activation of unconventional T cell subsets, γδTCR + Vδ2+ T cells and MAIT cells. These findings demonstrate that S. pyogenes infection generates a robust early immune response, which may be important for host protection. Together, these data will help advance research to establish correlates of immune protection and focus the evaluation of vaccines.


Assuntos
Faringite/imunologia , Streptococcus pyogenes/imunologia , Adulto , Antígenos de Bactérias/imunologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Masculino , Células T Invariantes Associadas à Mucosa , Faringite/microbiologia , Infecções Estreptocócicas , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores , Células Th17/imunologia
5.
BMC Infect Dis ; 21(1): 463, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020607

RESUMO

BACKGROUND: Streptococcus pyogenes causes a profound global burden of morbidity and mortality across its diverse clinical spectrum. To support a new controlled human infection ('challenge') model seeking to accelerate S. pyogenes vaccine development, we aimed to develop an accurate and reliable molecular method for quantifying bacterial load from pharyngeal swabs collected during experimental human pharyngitis. METHODS: Combined sequential RNA + DNA extraction from throat swabs was compared to traditional separate RNA-only and DNA-only extractions. An emm-type specific qPCR was developed to detect the emm75 challenge strain. Results from the qPCR were compared to culture, using throat swab samples collected in a human challenge study. RESULTS: The qPCR was 100% specific for the emm75 challenge strain when tested against a panel of S. pyogenes emm-types and other respiratory pathogens. Combined RNA + DNA extraction had similar yield to traditional separate extractions. The combined extraction method and emm75 qPCR had 98.8% sensitivity compared to culture for throat swabs collected from challenge study participants. CONCLUSIONS: We have developed a reliable molecular method for measuring S. pyogenes bacterial load from throat swabs collected in a controlled human infection model of S. pyogenes pharyngitis. TRIAL REGISTRATION: NCT03361163 on 4th December 2017.


Assuntos
Antígenos de Bactérias/genética , Carga Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Faringite/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Adulto , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Seguimentos , Voluntários Saudáveis , Humanos , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , Sensibilidade e Especificidade , Streptococcus pyogenes/classificação , Streptococcus pyogenes/isolamento & purificação
6.
Lancet Microbe ; 2(7): e291-e299, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35544165

RESUMO

BACKGROUND: Streptococcus pyogenes is a leading cause of infection-related morbidity and mortality. A reinvigorated vaccine development effort calls for new clinically relevant human S pyogenes experimental infection models to support proof of concept evaluation of candidate vaccines. We describe the initial Controlled Human Infection for Vaccination Against S pyogenes (CHIVAS-M75) study, in which we aimed to identify a dose of emm75 S pyogenes that causes acute pharyngitis in at least 60% of volunteers when applied to the pharynx by swab. METHODS: This observational, dose-finding study was done in a clinical trials facility in Melbourne (VIC, Australia). Groups of healthy volunteers aged 18-40 years, at low risk of complicated S pyogenes disease, and without high type-specific anti-emm75 IgG antibodies against the challenge strain were challenged and closely monitored as inpatients for up to 6 days, and then as outpatients for 6 months. Antibiotics were started upon diagnosis (clinical signs and symptoms of pharyngitis and a positive rapid molecular test) or after 5 days in those without pharyngitis. Rapid test results were confirmed by standard bacterial culture. After a sentinel participant, cohorts of five and then ten participants were challenged, with protocol-directed dose-escalation or de-escalation for subsequent cohorts. The primary outcome was the proportion of participants at each dose level with pharyngitis by day 5 after challenge. The study is registered with ClinicalTrials.gov, NCT03361163. FINDINGS: Between July 10, 2018, and Sept 23, 2019, 25 healthy adults were challenged with emm75 S pyogenes and included in analyses. Pharyngitis was diagnosed in 17 (85%; 95% CI 62-97) of 20 participants at the starting dose level (1-3 × 105 colony-forming units [CFU]/mL). This high proportion prompted dose de-escalation. At the lower dose level (1-3 × 104 CFU/mL), pharyngitis was diagnosed in one of five participants. Immunological, biochemical, and microbiological results supported the clinical picture, with acute symptomatic pharyngitis characterised by pharyngeal colonisation by S pyogenes accompanied by significantly elevated C-reactive protein and inflammatory cytokines (eg, interferon-γ and interleukin-6), and modest serological responses to streptolysin O and deoxyribonuclease B. There were no severe (grade 3) or serious adverse events related to challenge. INTERPRETATION: We have established a reliable pharyngitis human infection model with reassuring early safety findings to accelerate development of vaccines and other interventions to control disease due to S pyogenes. FUNDING: Australian National Health and Medical Research Council.


Assuntos
Faringite , Escarlatina , Adulto , Austrália , Humanos , Faringite/tratamento farmacológico , Faringe/microbiologia , Streptococcus pyogenes
7.
mSphere ; 5(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915226

RESUMO

The core Mga (multiple gene activator) regulon of group A Streptococcus (GAS) contains genes encoding proteins involved in adhesion and immune evasion. While all GAS genomes contain genes for Mga and C5a peptidase, the intervening genes encoding M and M-like proteins vary between strains. The genetic make-up of the Mga regulon of GAS was characterized by utilizing a collection of 1,688 GAS genomes that are representative of the global GAS population. Sequence variations were examined with multiple alignments, and the expression of all core Mga regulon genes was examined by quantitative reverse transcription-PCR in a representative strain collection. In 85.2% of the sampled genomes, the Mga locus contained genes encoding Mga, Mrp, M, Enn, and C5a peptidase proteins. These isolates account for 53% of global infections. Only 9.1% of genomes did not contain either an mrp or an enn gene. The pairwise identity within Enn (68.6%) and Mrp (83.2%) protein sequences was higher than within M proteins (44.7%). Gene expression varied between strains tested, but high expression was recorded for all genes in at least one strain. Previous nomenclature issues were clarified with molecular gene definitions. Our findings support a shift in focus in the GAS research field to further consider the role of Mrp and Enn in virulence and vaccine development.IMPORTANCE While the GAS M protein has been the leading vaccine target for decades, the bacteria encode many other virulence factors of interest for vaccine development. In this work, we show that emm-like genes are encoded in a remarkable majority of GAS genomes and expressed at a level similar to that for the emm gene. In collaboration with the U.S. Centers for Disease Control, we developed molecular definitions of the different emm and emm-like gene families. This clarification should abrogate mistyping of strains, especially in the area of whole-genome typing. We have also updated the emm-typing collection by removing emm-like gene sequences and provided in-depth analysis of Mrp and Enn protein sequence structure and diversity.


Assuntos
Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Genoma Bacteriano , Streptococcus pyogenes/genética , DNA Bacteriano/genética , Regulon , Virulência/genética , Fatores de Virulência , Sequenciamento Completo do Genoma
9.
Nat Genet ; 51(6): 1035-1043, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133745

RESUMO

Group A Streptococcus (GAS; Streptococcus pyogenes) is a bacterial pathogen for which a commercial vaccine for humans is not available. Employing the advantages of high-throughput DNA sequencing technology to vaccine design, we have analyzed 2,083 globally sampled GAS genomes. The global GAS population structure reveals extensive genomic heterogeneity driven by homologous recombination and overlaid with high levels of accessory gene plasticity. We identified the existence of more than 290 clinically associated genomic phylogroups across 22 countries, highlighting challenges in designing vaccines of global utility. To determine vaccine candidate coverage, we investigated all of the previously described GAS candidate antigens for gene carriage and gene sequence heterogeneity. Only 15 of 28 vaccine antigen candidates were found to have both low naturally occurring sequence variation and high (>99%) coverage across this diverse GAS population. This technological platform for vaccine coverage determination is equally applicable to prospective GAS vaccine antigens identified in future studies.


Assuntos
Genômica , Vacinas Estreptocócicas/genética , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/genética , Streptococcus pyogenes/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Filogenia , Recombinação Genética , Infecções Estreptocócicas/prevenção & controle , Streptococcus pyogenes/classificação
10.
FEMS Microbiol Rev ; 42(2): 193-204, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228173

RESUMO

M and M-like surface proteins from group A Streptococcus (GAS) act as virulence factors and have been used in multiple vaccine candidates. While the M protein has been extensively studied, the two genetically and functionally related M-like proteins, Mrp and Enn, although present in most streptococcal strains have been relatively less characterised. We compile the current state of knowledge for these two proteins, from discovery to recent studies on function and immunogenicity, using the M protein for comparison as a prototype of this family of proteins. We focus on the known interactions between M-like proteins and host ligand proteins, and analyse the genetic data supporting these interactions. We discuss known and possible functions of M-like proteins during GAS infections, and highlight knowledge gaps where further investigation is warranted.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Streptococcus/genética , Streptococcus/imunologia , Streptococcus/metabolismo , Streptococcus/patogenicidade , Fatores de Virulência/metabolismo
11.
Clin Infect Dis ; 65(9): 1523-1531, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29020160

RESUMO

BACKGROUND: Group A Streptococcus (GAS) skin infections are particularly prevalent in developing nations. The GAS M protein, by which strains are differentiated into >220 different emm types, is immunogenic and elicits protective antibodies. A major obstacle for vaccine development has been the traditional understanding that immunity following infection is restricted to a single emm type. However, recent evidence has led to the hypothesis of immune cross-reactivity between emm types. METHODS: We investigated the human serological response to GAS impetigo in Fijian schoolchildren, focusing on 3 major emm clusters (E4, E6, and D4). Pre- and postinfection sera were assayed by enzyme-linked immunosorbent assay with N-terminal M peptides and bactericidal assays using the infecting-type strain, emm cluster-related strains, and nonrelated strains. RESULTS: Twenty of the 53 paired sera demonstrated a ≥4-fold increase in antibody titer against the infecting type. When tested against all cluster-related M peptides, we found that 9 of 17 (53%) paired sera had a ≥4-fold increase in antibody titer to cluster-related strains as well. When grouped by cluster, the mean change to cluster-related emm types in E4 and E6 was >4-fold (5.9-fold and 19.5-fold, respectively) but for D4 was 3.8-fold. The 17 paired sera were tested in bactericidal assays against selected cluster-related and nonrelated strains. While the responses were highly variable, numerous instances of cross-reactive killing were observed. CONCLUSIONS: These data demonstrate that M type-specific and cross-reactive immune responses occur following skin infection. The cross-reactive immune responses frequently align with emm clusters, raising new opportunities to design multivalent vaccines with broad coverage.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/imunologia , Dermatopatias Bacterianas/epidemiologia , Dermatopatias Bacterianas/imunologia , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Adolescente , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Fiji/epidemiologia , Humanos , Estudos Longitudinais , Estudantes
12.
Front Microbiol ; 7: 1119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27499748

RESUMO

Acute rheumatic fever (ARF) is an autoimmune response to Group A Streptococcus (GAS) infection. Repeated GAS exposures are proposed to 'prime' the immune system for autoimmunity. This notion of immune-priming by multiple GAS infections was first postulated in the 1960s, but direct experimental evidence to support the hypothesis has been lacking. Here, we present novel methodology, based on antibody responses to GAS T-antigens, that enables previous GAS exposures to be mapped in patient sera. T-antigens are surface expressed, type specific antigens and GAS strains fall into 18 major clades or T-types. A panel of recombinant T-antigens was generated and immunoassays were performed in parallel with serum depletion experiments allowing type-specific T-antigen antibodies to be distinguished from cross-reactive antibodies. At least two distinct GAS exposures were detected in each of the ARF sera tested. Furthermore, no two sera had the same T-antigen reactivity profile suggesting that each patient was exposed to a unique series of GAS T-types prior to developing ARF. The methods have provided much-needed experimental evidence to substantiate the immune-priming hypothesis, and will facilitate further serological profiling studies that explore the multifaceted interactions between GAS and the host.

13.
J Immunol Res ; 2015: 167089, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26101780

RESUMO

Group A streptococcus (GAS) is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/imunologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Imunoensaio/métodos , Avaliação de Resultados em Cuidados de Saúde , Vacinas Estreptocócicas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA