RESUMO
Freshwater macroinvertebrates are a diverse group and play key ecological roles, including accelerating nutrient cycling, filtering water, controlling primary producers, and providing food for predators. Their differences in tolerances and short generation times manifest in rapid community responses to change. Macroinvertebrate community composition is an indicator of water quality. In Europe, efforts to improve water quality following environmental legislation, primarily starting in the 1980s, may have driven a recovery of macroinvertebrate communities. Towards understanding temporal and spatial variation of these organisms, we compiled the TREAM dataset (Time seRies of European freshwAter Macroinvertebrates), consisting of macroinvertebrate community time series from 1,816 river and stream sites (mean length of 19.2 years and 14.9 sampling years) of 22 European countries sampled between 1968 and 2020. In total, the data include >93 million sampled individuals of 2,648 taxa from 959 genera and 212 families. These data can be used to test questions ranging from identifying drivers of the population dynamics of specific taxa to assessing the success of legislative and management restoration efforts.
Assuntos
Invertebrados , Rios , Animais , Europa (Continente) , Água Doce , Dinâmica Populacional , Qualidade da Água , Biodiversidade , EcossistemaRESUMO
Inland navigation in Europe is proposed to increase in the coming years, being promoted as a low-carbon form of transport. However, we currently lack knowledge on how this would impact biodiversity at large scales and interact with existing stressors. Here we addressed this knowledge gap by analysing fish and macroinvertebrate community time series across large European rivers comprising 19,592 observations from 4,049 sampling sites spanning the past 32 years. We found ship traffic to be associated with biodiversity declines, that is, loss of fish and macroinvertebrate taxonomic richness, diversity and trait richness. Ship traffic was also associated with increases in taxonomic evenness, which, in concert with richness decreases, was attributed to losses in rare taxa. Ship traffic was especially harmful for benthic taxa and those preferring slow flows. These effects often depended on local land use and riparian degradation. In fish, negative impacts of shipping were highest in urban and agricultural landscapes. Regarding navigation infrastructure, the negative impact of channelization on macroinvertebrates was evident only when riparian degradation was also high. Our results demonstrate the risk of increasing inland navigation on freshwater biodiversity. Integrative waterway management accounting for riparian habitats and landscape characteristics could help to mitigate these impacts.
Assuntos
Biodiversidade , Peixes , Invertebrados , Animais , Europa (Continente) , Invertebrados/fisiologia , Rios , Água Doce , Conservação dos Recursos Naturais , NaviosRESUMO
Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.
Assuntos
Biodiversidade , Conservação dos Recursos Hídricos , Monitoramento Ambiental , Água Doce , Invertebrados , Animais , Espécies Introduzidas/tendências , Invertebrados/classificação , Invertebrados/fisiologia , Europa (Continente) , Atividades Humanas , Conservação dos Recursos Hídricos/estatística & dados numéricos , Conservação dos Recursos Hídricos/tendências , Hidrobiologia , Fatores de Tempo , Produção Agrícola , Urbanização , Aquecimento Global , Poluentes da Água/análiseRESUMO
We assessed the temporal changes in and the relationships between the structures of the macroinvertebrate communities and the environmental conditions of the French Rhône River (the river from Lake Geneva to the Mediterranean Sea) over the last 20 years (1985-2004). Multisite environmental and biological datasets were analysed using multiple CO-inertia analysis (MCOA) and Procrustean analysis. Changes in environmental conditions were mainly marked by an improvement in water quality between 1985 and 1991 and by an increase in water temperature from 1985 onwards due to climate change. Improvement in water quality seemed to delay changes in community structures under global warming. We then observed trends in community structures coupled with high temperatures and a decrease in oxygen content. Interestingly, we observed both gradual changes and rapid switches in community states. These shifts seemed coupled to extreme hydroclimatic events (i.e. pulse disturbances). Floods and the 2003 heatwave enhanced the development of eurytolerant and invasive taxa which were probably able to take advantage of gradual warming environmental conditions. Despite various site-specific "press" constraints (e.g. hydropower schemes, nuclear power plants), similar changes in community structures were observed along the French Rhône River. Such consistency in temporal processes at large geographical scales underlined the strength of hydroclimatic constraints on community dynamics compared to specific local disturbances. Finally, community structures did not show any sign of recovery, and their relative sensitivities to extreme hydroclimatic events seemed to increase with time. Thus, our results suggest that global changes may reduce the resilience of current community states.
Assuntos
Clima , Ecossistema , Temperatura Alta , Invertebrados/fisiologia , Rios , Animais , França , Efeito Estufa , Oxigênio/análise , Dinâmica Populacional , Água/químicaRESUMO
Multitable techniques are rarely used for investigating patterns in ecological data surveys despite their ability to deal with the spatial and/or temporal stability of assemblages. Based on a covariance optimisation criterion, Multiple Co-inertia analysis (MCOA) enables the simultaneous ordination of several tables. Such analysis allows the representation of the stable vs. unstable part of the assemblage structure in comparison to a reference derived from each table. We used MCOA on multiple time series of invertebrate sampling to show that synchrony in the temporal variability of communities can establish between geographically distant locations despite the spatial and temporal plasticity of the faunistic responses to long-term changes in environmental conditions.