RESUMO
We compared four bacteriophage species, T5, λ, T7, and Φ29, to explore the possibilities of DNA reorganization in the capsid where the chain is highly concentrated and confined. First, we did not detect any change in DNA organization as a function of temperature between 20 to 40 °C. Second, the presence of spermine (4+) induces a significant enlargement of the typical size of the hexagonal domains in all phages. We interpret these changes as a reorganization of DNA by slight movements of defects in the structure, triggered by a partial screening of repulsive interactions. We did not detect any signal characteristic of a long-range chiral organization of the encapsidated DNA in the presence and in the absence of spermine.
Assuntos
Bacteriófago T7/química , Bacteriófago lambda/química , Capsídeo/química , DNA Viral/química , Siphoviridae/química , Espermina/química , Bacteriófago T7/ultraestrutura , Bacteriófago lambda/ultraestrutura , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Empacotamento do DNA , DNA Viral/ultraestrutura , Conformação de Ácido Nucleico , Siphoviridae/ultraestrutura , Especificidade da Espécie , Temperatura , TermodinâmicaRESUMO
Nucleosome core particles correspond to the structural units of eukaryotic chromatin. They are charged colloids, 101 Angstrom in diameter and 55 Angstrom in length, formed by the coiling of a 146/147 bp DNA fragment (50 nm) around the histone protein octamer. Solutions of these particles can be concentrated, under osmotic pressure, up to the concentrations found in the nuclei of living cells. In the presence of monovalent cations (Na(+)), nucleosomes self-assemble into crystalline or liquid crystalline phases. A lamello-columnar phase is observed at 'low salt' concentrations, while a two-dimensional hexagonal phase and a three-dimensional quasi-hexagonal phase form at 'high salt' concentrations. We followed the formation of these phases from the dilute isotropic solutions to the ordered phases by combining cryoelectron microscopy and X-ray diffraction analyses. The phase diagram is presented as a function of the monovalent salt concentration and applied osmotic pressure. An alternative method to condense nucleosomes is to induce their aggregation upon addition of divalent or multivalent cations (Mg(2+), spermidine(3+) and spermine(4+)). Ordered phases are also found in the aggregates. We also discuss whether these condensed phases of nucleosomes may be relevant from a biological point of view.