Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 15(13): 7081-7092, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38869011

RESUMO

In the present study, sensory orientation and instrumental analysis were employed to separate, purify, and identify umami peptides in Agrocybe aegerita hydrolysate. Using UPLC-ESI-Q-TOF MS, 11 potential umami peptides (EY, EG, EV, ENG, PEG, DEL, ECG, DDL, PEEL, EDCS and DGPL) were identified from the screened fractions. Moreover, sensory evaluation and E-tongue results showed that the identified umami peptides had umami attributes, within an umami threshold range of 0.0625-0.25 mg mL-1. In addition, DDL and DEL exhibited the highest umami flavor intensity. Molecular docking analysis further showed that 4 umami peptides (namely, EY, EG, ECG, and DGPL) entered the T1R1 cavity of the umami receptor. Additionally, 4 umami peptides (namely, EV, ENG, DEL, and EDCS) could be embedded in the binding pocket of the T1R3 cavity. Furthermore, 3 umami peptides (PEG, DDL, and PEEL) strongly interacted with T1R1/T1R3. Thus, the findings collectively indicated that the predominant interacting forces between umami peptide and umami receptor are hydrogen bonding and hydrophobic interactions. Finally, it was shown that the primary binding sites of T1R1 were residues Ser109, Gln52 and Ser148, while the primary binding sites of T1R3 were residues Ser172, Arg277 and Ala170. The study identified the umami peptides in A. aegerita for the first time, which provided more information for the umami research of A. aegerita and provided the theoretical basis for the further development and utilization of A. aegerita.


Assuntos
Simulação de Acoplamento Molecular , Peptídeos , Paladar , Humanos , Peptídeos/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Masculino , Adulto , Feminino
2.
Food Chem ; 455: 139919, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833867

RESUMO

Agrocybe aegerita, one of the edible mushroom varieties, is popular among consumers for its umami taste. Umami peptides, including EV, EG, EY, ENG, ECG, DEL, DDL, PEG, PEEL, DGPL, and EDCS are the main umami compounds in A. aegerita. In this study, when the concentration of these 11 umami peptides was 5 mg/mL, the corresponding relative umami intensity (measured by MSG concentration) ranged from 4.457 to 5.240 mg/mL, with DDL being the highest. All umami peptides exhibited better umami taste under neutral and weakly acidic conditions (pH 6-7). EY and ENG, with a higher umami intensity at 70 °C, were more suitable for a wide application in thermally processed foods. Additionally, the relationship between the structure and strength of umami peptides was explored using a three-dimensional quantitative structure-activity relationship model with an R2 of 0.987. Overall, umami peptides in A. aegerita possess strong potential for application in food processing.


Assuntos
Agrocybe , Peptídeos , Relação Quantitativa Estrutura-Atividade , Paladar , Peptídeos/química , Agrocybe/química , Humanos , Aromatizantes/química
3.
aBIOTECH ; 5(1): 29-45, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38576434

RESUMO

Bitter melon fruit is susceptible to yellowing, softening, and rotting under room-temperature storage conditions, resulting in reduced commercial value. Nitric oxide (NO) is an important signaling molecule and plays a crucial role in regulating the fruit postharvest quality. In this study, we investigated the effects of NO treatment on changes in sensory and firmness of bitter melon fruit during postharvest storage. Moreover, transcriptomic, metabolomic, and proteomic analyses were performed to elucidate the regulatory mechanisms through which NO treatment delays the ripening and senescence of bitter melon fruit. Our results show that differentially expressed genes (DEGs) were involved in fruit texture (CSLE, ß-Gal, and PME), plant hormone signal transduction (ACS, JAR4, and AUX28), and fruit flavor and aroma (SUS2, LOX, and GDH2). In addition, proteins differentially abundant were associated with fruit texture (PLY, PME, and PGA) and plant hormone signal transduction (PBL15, JAR1, and PYL9). Moreover, NO significantly increased the abundance of key enzymes involved in the phenylpropanoid biosynthetic pathway, thus enhancing the disease resistance and alleviating softening of bitter melon fruit. Finally, differential metabolites mainly included phenolic acids, terpenoids, and flavonoids. These results provide a theoretical basis for further studies on the physiological changes associated with postharvest ripening and senescence of bitter melon fruit. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00110-y.

4.
Mol Hortic ; 4(1): 5, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369544

RESUMO

N4-acetylcytidine (ac4C) modification of mRNA has been shown to be present in plant RNAs, but its regulatory function in plant remains largely unexplored. In this study, we investigated the differentially expressed mRNAs, lncRNAs and acetylation modifications of mRNAs in tomato fruits from both genotypes. By comparing wild-type (AC) tomato and the ethylene receptor-mutant (Nr) tomato from mature green (MG) to six days after the breaker (Br6) stage, we identified differences in numerous key genes related to fruit ripening and observed the corresponding lncRNAs positively regulated the target genes expression. At the post-transcriptional level, the acetylation level decreased and increased in AC and Nr tomatoes from MG to Br6 stage, respectively. The integrated analysis of RNA-seq and ac4C-seq data revealed the potential positive role of acetylation modification in regulating gene expression. Furthermore, we found differential acetylation modifications of certain transcripts (ACO, ETR, ERF, PG, CesA, ß-Gal, GAD, AMY, and SUS) in AC and Nr fruits which may explain the differences in ethylene production, fruit texture, and flavor during their ripening processes. The present study provides new insights into the molecular mechanisms by which acetylation modification differentially regulates the ripening process of wild-type and mutant tomato fruits deficient in ethylene signaling.

5.
Foods ; 12(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36981222

RESUMO

The 'Xiaobai' apricot fruit is rich in nutrients and is harvested in summer, but the high temperature limits its storage period. To promote commercial quality and extend shelf life, we investigated the effectiveness of Ultraviolet C (UV-C) combined with 1-methylcyclopropene (1-MCP) treatment on 'Xiaobai' apricot fruit stored at 4 ± 0.5 °C for 35 days. The results revealed that the combination treatment of 1-MCP and UV-C performed better than either UV-C or 1-MCP alone in fruit quality preservation. The combination treatment could delay the increase in weight loss, ethylene production, and respiration rate; retain the level of soluble solid content, firmness, titratable acid, and ascorbic acid content; promote the total phenolics and flavonoids accumulation; improve antioxidant enzyme activity and relative gene expression, and DPPH scavenging ability; and reduce MDA, H2O2, O2.- production. The combined treatment improved the quality of apricot fruit by delaying ripening and increasing antioxidant capacity. Therefore, combining UV-C and 1-MCP treatment may be an effective way to improve the post-harvest quality and extend the storage period of the 'Xiaobai' apricot fruit, which may provide insights into the preservation of 'Xiaobai' apricot fruit.

6.
Front Plant Sci ; 14: 1142913, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968400

RESUMO

Several physiological changes occur during fruit storage, which include the regulation of genes, metabolisms and transcription factors. In this study, we compared 'JF308' (a normal tomato cultivar) and 'YS006' (a storable tomato cultivar) to determine the difference in accumulated metabolites, gene expression, and accessible chromatin regions through metabolome, transcriptome, and ATAC-seq analysis. A total of 1006 metabolites were identified in two cultivars. During storage time, sugars, alcohols and flavonoids were found to be more abundant in 'YS006' compared to 'JF308' on day 7, 14, and 21, respectively. Differentially expressed genes, which involved in starch and sucrose biosynthesis were observed higher in 'YS006'. 'YS006' had lower expression levels of CesA (cellulose synthase), PL (pectate lyase), EXPA (expansin) and XTH (xyglucan endoglutransglucosylase/hydrolase) than 'JF308'. The results showed that phenylpropanoid pathway, carbohydrate metabolism and cell wall metabolism play important roles in prolonging the shelf life of tomato (Solanum lycopersicum) fruit. The ATAC-seq analysis revealed that the most significantly up-regulated transcription factors during storage were TCP 2,3,4,5, and 24 in 'YS006' compared to 'JF308' on day 21. This information on the molecular regulatory mechanisms and metabolic pathways of post-harvest quality changes in tomato fruit provides a theoretical foundation for slowing post-harvest decay and loss, and has theoretical importance and application value in breeding for longer shelf life cultivars.

7.
Hortic Res ; 10(1): uhac228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643758

RESUMO

Momordica charantia L. var. abbreviata Ser. (Mca), known as bitter gourd or bitter melon, is a Momordica variety with medicinal value and belongs to the Cucurbitaceae family. In view of the lack of genomic information on bitter gourd and other Momordica species and to promote Mca genomic research, we assembled a 295.6-Mb telomere-to-telomere (T2T) high-quality Mca genome with six gap-free chromosomes after Hi-C correction. This genome is anchored to 11 chromosomes, which is consistent with the karyotype information, and comprises 98 contigs (N50 of 25.4 Mb) and 95 scaffolds (N50 of 25.4 Mb). The Mca genome harbors 19 895 protein-coding genes, of which 45.59% constitute predicted repeat sequences. Synteny analysis revealed variations involved in fruit quality during the divergence of bitter gourd. In addition, assay for transposase-accessible chromatin by high-throughput sequencing and metabolic analysis showed that momordicosides and other substances are characteristic of Mca fruit pulp. A combined transcriptomic and metabolomic analysis revealed the mechanisms of pigment accumulation and cucurbitacin biosynthesis in Mca fruit peels, providing fundamental molecular information for further research on Mca fruit ripening. This report provides a new genetic resource for Momordica genomic studies and contributes additional insights into Cucurbitaceae phylogeny.

8.
Plants (Basel) ; 11(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015399

RESUMO

With the development of facility agriculture, low-light stress is a prominent problem and a popular research topic currently. In this study, transcriptome analysis was used to analyze the genes in the fruit peel of photosensitive and nonphotosensitive eggplant and to explore the mechanism of changes in fruit color, texture, hormone content, aroma, and taste of these two different types of eggplant. We identified 51, 65, 66, and 66 genes involved in synthesizing anthocyanins, texture, hormone content, and aroma and flavor, respectively, in the two different types of eggplant based on the variation in gene expression trends in the fruit peel. These results provide a basis for further analysis of the molecular mechanism underlying the regulatory processes in eggplant fruits under low-light stress.

9.
Hortic Res ; 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35043161

RESUMO

The Cucurbitaceae is one of the most genetically diverse plant families in the world. Many of them are important vegetables or medicinal plants and are widely distributed worldwide. The rapid development of sequencing technologies and bioinformatic algorithms has enabled the generation of genome sequences of numerous important Cucurbitaceae species. This has greatly facilitated research on gene identification, genome evolution, genetic variation and molecular breeding of cucurbit crops. So far, genome sequences of 18 different cucurbit species belonging to tribes Benincaseae, Cucurbiteae, Sicyoeae, Momordiceae and Siraitieae have been deciphered. This review summarizes the genome sequence information, evolutionary relationship, and functional genes associated with important agronomic traits (e.g., fruit quality). The progress of molecular breeding in cucurbit crops and prospects for future applications of Cucurbitaceae genome information are also discussed.

10.
Front Nutr ; 8: 769715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926549

RESUMO

Tomato fruit is susceptible to chilling injury (CI) when stored at low temperatures, limiting its storage potential, and resulting in economic loss if inappropriate temperatures are used. Brassinolide (BR) is a plant growth regulator that is known to decrease the susceptibility of fruit to CI. In this study, transcriptome, metabolome, and proteome analysis revealed the regulation mechanism of BR treatment in alleviating tomato fruit CI. The results showed that the differentially expressed metabolites mainly included amino acids, organic acids, carbohydrates, and lipids. Differentially expressed genes (DEGs) were involved in plant cold stress response (HSFA3, SHSP, and TPR), fruit redox process (POD, PAL, and LOX), related to the fruit texture (CESA, ß-Gal, and PAE), plant hormone signal transduction (ACS3, ARF, and ERF,), transcription factors (TCP, bHLH, GATA). Moreover, differentially expressed proteins were associated with fruit texture (CESA, PE, PL, and CHI), plant oxidation processes (LOX, GPX, CAT, and POD), plant cold stress response (HSF, HSP20, HSP70, and HSP90B), plant hormone signal transduction (BSK1 and JAR1) and transcription factors (WRKY and MYB). Our study showed that BR alleviates CI symptoms of tomato fruit by regulating LOX in the α-linolenic acid metabolism pathway, enhancing jasmonic acid-CoA (JA-CoA) synthesis, inhibiting cell wall and membrane lipid damage. The results provided a theoretical basis for further study on the CI mechanism of tomato fruit.

11.
Hortic Res ; 8(1): 35, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33517348

RESUMO

Chayote (Sechium edule) is an agricultural crop in the Cucurbitaceae family that is rich in bioactive components. To enhance genetic research on chayote, we used Nanopore third-generation sequencing combined with Hi-C data to assemble a draft chayote genome. A chromosome-level assembly anchored on 14 chromosomes (N50 contig and scaffold sizes of 8.40 and 46.56 Mb, respectively) estimated the genome size as 606.42 Mb, which is large for the Cucurbitaceae, with 65.94% (401.08 Mb) of the genome comprising repetitive sequences; 28,237 protein-coding genes were predicted. Comparative genome analysis indicated that chayote and snake gourd diverged from sponge gourd and that a whole-genome duplication (WGD) event occurred in chayote at 25 ± 4 Mya. Transcriptional and metabolic analysis revealed genes involved in fruit texture, pigment, flavor, flavonoids, antioxidants, and plant hormones during chayote fruit development. The analysis of the genome, transcriptome, and metabolome provides insights into chayote evolution and lays the groundwork for future research on fruit and tuber development and genetic improvements in chayote.

12.
Hortic Res ; 7(1): 199, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328440

RESUMO

Snake gourd (Trichosanthes anguina L.), which belongs to the Cucurbitaceae family, is a popular ornamental and food crop species with medicinal value and is grown in many parts of the world. Although progress has been made in its genetic improvement, the organization, composition, and evolution of the snake gourd genome remain largely unknown. Here, we report a high-quality genome assembly for snake gourd, comprising 202 contigs, with a total size of 919.8 Mb and an N50 size of 20.1 Mb. These findings indicate that snake gourd has one of the largest genomes of Cucurbitaceae species sequenced to date. The snake gourd genome assembly harbors 22,874 protein-coding genes and 80.0% of the genome consists of repetitive sequences. Phylogenetic analysis reveals that snake gourd is closely related to sponge gourd but diverged from their common ancestor ~33-47 million years ago. The genome sequence reported here serves as a valuable resource for snake gourd genetic research and comparative genomic studies in Cucurbitaceae and other plant species. In addition, fruit transcriptome analysis reveals the candidate genes related to quality traits during snake gourd fruit development and provides a basis for future research on snake gourd fruit development and ripening at the transcript level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA