Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Drug Metab Pharmacokinet ; 49(2): 131-147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38123834

RESUMO

The gut microbiota, known as the second human genome, plays a vital role in modulating drug metabolism, significantly impacting therapeutic outcomes and adverse effects. Emerging research has elucidated that the microbiota mediates a range of modifications of drugs, leading to their activation, inactivation, or even toxication. In diverse individuals, variations in the gut microbiota can result in differences in microbe-drug interactions, underscoring the importance of personalized approaches in pharmacotherapy. However, previous studies on drug metabolism in the gut microbiota have been hampered by technical limitations. Nowadays, advances in biotechnological tools, such as microbially derived metabolism screening and microbial gene editing, have provided a deeper insight into the mechanism of drug metabolism by gut microbiota, moving us toward personalized therapeutic interventions. Given this situation, our review summarizes recent advances in the study of gut-microbiota-mediated drug metabolism and showcases techniques and models developed to navigate the challenges posed by the microbial involvement in drug action. Therefore, we not only aim at understanding the complex interaction between the gut microbiota and drugs and outline the development of research techniques and models, but we also summarize the specific applications of new techniques and models in researching gut-microbiota-mediated drug metabolism, with the expectation of providing new insights on how to study drug metabolism by gut microbiota.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Microbioma Gastrointestinal , Humanos , Interações Medicamentosas
2.
Curr Drug Metab ; 23(11): 905-911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278441

RESUMO

BACKGROUND: Andrographolide is a promising natural substance with numerous pharmacotherapy uses. 14-deoxy-12(R)-sulfo andrographolide (SAP) is the main metabolite of andrographolide in the intestine. OBJECTIVE: To investigate the pharmacokinetic properties of SAP, a precise and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of SAP concentration in rat plasma was developed and validated in this study. METHODS: Chromatographic separation was achieved on an Acpuity UPLC BEH C18 column with gradient elution that consisted of methanol and water at a flow rate of 0.3 mL/min. MS/MS detection was carried out by the multiple reaction monitoring (MRM) mode with negative electrospray ionization (ESI-) source, with the transitions of m/z 413.2→m/z 287.2 for SAP and m/z 269→m/z 133 for genistein [which was used as an internal standard (IS)]. RESULTS: The calibration curve of SAP was linear over the concentration range of 5-120 ng/mL. The selectivity, precision, accuracy, extraction recovery, matrix effect, and stability of the method were within acceptable ranges. This SAP quantification method was then successfully applied to a pharmacokinetic study of SAP. The area under the curve (AUC) of SAP in rats treated with SAP at 60 mg/kg by intravenous administration was 7498.53 ± 2405.02 mg/L·min. The AUC of SAP in rats treated with SAP at 60 mg/kg by oral administration was 97.74 ± 39.56 mg/L·min. Thus, the absolute oral bioavailability of SAP was determined to be 1.40%.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Ratos Sprague-Dawley , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes
3.
Metabolites ; 12(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144273

RESUMO

Magnolol, the main active ingredient of Magnolia officinalis, has been reported to display anti-inflammatory activity. Sulfation plays an important role in the metabolism of magnolol. The magnolol sulfated metabolite was identified by the ultra-performance liquid chromatography to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and a proton nuclear magnetic resonance (1H-NMR). The magnolol sulfation activity of seven major recombinant sulfotransferases (SULTs) isoforms (SULT1A1*1, SULT1A1*2, SULT1A2, SULT1A3, SULT1B1, SULT1E1, and SULT2A1) was analyzed. The metabolic profile of magnolol was investigated in liver S9 fractions from human (HLS9), rat (RLS9), and mouse (MLS9). The anti-inflammatory effects of magnolol and its sulfated metabolite were evaluated in RAW264.7 cells stimulated by lipopolysaccharide (LPS). Magnolol was metabolized into a mono-sulfated metabolite by SULTs. Of the seven recombinant SULT isoforms examined, SULT1B1 exhibited the highest magnolol sulfation activity. In liver S9 fractions from different species, the CLint value of magnolol sulfation in HLS9 (0.96 µL/min/mg) was similar to that in RLS9 (0.99 µL/min/mg) but significantly higher than that in MLS9 (0.30 µL/min/mg). Magnolol and its sulfated metabolite both significantly downregulated the production of inflammatory mediators (IL-1ß, IL-6 and TNF-α) stimulated by LPS (p < 0.001). These results indicated that SULT1B1 was the major enzyme responsible for the sulfation of magnolol and that the magnolol sulfated metabolite exhibited potential anti-inflammatory effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA