Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Phytomedicine ; 129: 155595, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677275

RESUMO

BACKGROUND: The potential therapeutic targeting of PINK1-PARK2-mediated mitophagy against cerebral ischemia/reperfusion (CI/R) injury involves the pathophysiological processes of neurovascular unit (NVU) and is closely associated with N-methyl-D-aspartate receptors (NMDARs) commonly expressed in NVU. 2,3,5,4'-Tetrahydroxy-stilbene-2-O-ß-D-glucoside (THSG), a compound derived from the traditional Chinese medicine Polygonum multiflorum Thunb., has demonstrated notable neuroprotective properties against CI/R injury. However, it remains unclear whether THSG exerts its protective effects through GluN2B related PINK1/ PARK2 pathway. PURPOSE: This study aims to explore the pharmacological effects of THSG on alleviating CI/R injury via the GluN2B-CaMKII-ERK1/2 pathway. METHODS: THSG neuroprotection against CI/R injury was studied in transient middle cerebral artery occlusion/reversion (tMCAO/R) model rats and in oxygen and glucose deprivation/ reoxygenation (OGD/R) induced neurons. PINK1-PARK2-mediated mitophagy involvement in the protective effect of THSG was investigated in tMCAO/R rats and OGD/R-induced neurons via THSG and 3-methyladenine (3-MA) treatment. Furthermore, the beneficial role of GluN2B in reperfusion and its contribution to the THSG effect via CaMKII-ERK1/2 and PINK1-PARK2-mediated mitophagy was explored using the GluN2B-selective antagonist Ro 25-6981 both in vivo and in vitro. Finally, the interaction between THSG and GluN2B was evaluated using molecular docking. RESULTS: THSG significantly reduced infarct volume, neurological deficits, penumbral neuron structure, and functional damage, upregulated the inhibitory apoptotic marker Bcl-2, and suppressed the increase of pro-apoptotic proteins including cleaved caspase-3 and Bax in tMCAO/R rats. THSG (1 µM) markedly improved the neuronal survival under OGD/R conditions. Furthermore, THSG promoted PINK1 and PARK2 expression and increased mitophagosome numbers and LC3-II-LC3-I ratio both in vivo and in vitro. The effects of THSG were considerably abrogated by the mitophagy inhibitor 3-MA in OGD/R-induced neurons. Inhibiting GluN2B profoundly decreased mitophagosome numbers and OGD/R-induced neuronal viability. Specifically, inhibiting GluN2B abolished the protection of THSG against CI/R injury and reversed the upregulation of PINK1-PARK2-mediated mitophagy by THSG. Inhibiting GluN2B eliminated THSG upregulation of ERK1/2 and CaMKII phosphorylation. The molecular docking analysis results demonstrated that THSG bound to GluN2B (binding energy: -5.2 ± 0.11 kcal/mol). CONCLUSIONS: This study validates the premise that THSG alleviates CI/R injury by promoting GluN2B expression, activating CaMKII and ERK1/2, and subsequently enhancing PINK1-PARK2-mediated mitophagy. This work enlightens the potential of THSG as a promising candidate for novel therapeutic strategies for treating ischemic stroke.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Traumatismo por Reperfusão , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Masculino , Traumatismo por Reperfusão/tratamento farmacológico , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Glucosídeos/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Neurônios/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo
2.
Heliyon ; 9(11): e22443, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034716

RESUMO

Ferroptosis has been observed during retinal photoreceptor cell death, suggesting that it plays a role in retinitis pigmentosa (RP) pathogenesis. Qi-Shen-Tang (QST) is a combination of two traditional Chinese medicines used for the treatment of ophthalmic diseases; however, its mechanism of action in RP and ferroptosis remains unclear. Therefore, this study aimed to explore the effect and potential molecular mechanisms of QST on RP. QST significantly improved tissue morphology and function of the retina in the RP model mice. A significant increase in retinal blood flow and normalization of the fundus structure were observed in mice in the treatment group. After QST treatment, the level of iron and the production of malondialdehyde decreased significantly; the levels of superoxide dismutase and glutathione increased significantly; and the protein expression of glutathione peroxidase 4 (GPX4), glutathione synthetase, solute carrier family 7 member 11, and nuclear factor erythroid 2-related factor 2 (NRF2) increased significantly. The molecular docking results demonstrated potential interactions between the small molecules of QST and the key proteins of NRF2/GPX4 signaling pathway. Our results indicate that QST may inhibit ferroptosis by inhibiting the NRF2/GPX4 signaling pathway, thereby reducing RP-induced damage to retinal tissue.

3.
BMC Ophthalmol ; 23(1): 302, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415101

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is a common cause of visual impairment. Apigenin has been shown to have antiangiogenic effects in various diseases. Our study aimed to investigate the role of apigenin in DR and elucidate the underlying mechanism. METHODS: Human retinal microvascular endothelial cells (HRMECs) were exposed to high glucose (HG) to establish a DR model. HRMECs were treated with apigenin. Then we knocked down or overexpressed miR-140-5p and HDAC3, and added PI3K/AKT inhibitor LY294002. The expression levels of miR-140-5p, HDAC3, and PTEN were measured using qRT-PCR. Western blot analysis was performed to assess the expression of HDAC3, PTEN, and PI3K/AKT pathway-related proteins. Finally, cell proliferation and migration were evaluated using MTT, wound-healing assay, and transwell assay, while angiogenesis was examined using the tube formation assay. RESULTS: HG treatment resulted in reduced miR-140-5p expression and overexpression of miR-140-5p suppressed proliferation, migration, and angiogenesis of the HG-induced HRMECs. Apigenin treatment significantly restored the decreased level of miR-140-5p caused by HG treatment and inhibited proliferation, migration, and angiogenesis of the HG-induced HRMECs by upregulating miR-140-5p. Moreover, miR-140-5p targeted HDAC3, and overexpression of miR-140-5p reversed the HG-inducted upregulation of HDAC3 expression. HDAC3 was found to bind to the promoter region of PTEN, inhibiting its expression. Knockdown of HDAC3 suppressed the PI3K/AKT pathway by elevating PTEN expression. Furthermore, apigenin inhibited angiogenesis in DR cell models through the regulating of the miR-140-5p/HDAC3-mediated PTEN/PI3K/AKT pathway. CONCLUSIONS: Apigenin effectively suppressed angiogenesis in HG-induced HRMECs by modulating the miR-140-5p/HDAC3-mediated PTEN/PI3K/AKT pathway. Our study may contribute to the development of novel therapeutic approaches and identification of potential targets for the treatment of DR.


Assuntos
Retinopatia Diabética , MicroRNAs , Humanos , Proteínas Proto-Oncogênicas c-akt , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases , Apigenina/farmacologia , Apigenina/metabolismo , Transdução de Sinais , Células Endoteliais/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Proliferação de Células , PTEN Fosfo-Hidrolase
4.
Mikrochim Acta ; 190(4): 153, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961633

RESUMO

Titanium carbide quantum dots (Ti3C2 QDs) were synthesized by ammonia-assisted hydrothermal method. We also synthesized potassium permanganate (KMnO4)-functionalized Ti3C2 QDs (Mn-QDs) by modifying Ti3C2 nanosheets with KMnO4 and then cutting the functional nanosheets into Mn-QDs. The Ti3C2 QDs and Mn-QDs were characterized by fluorescence spectroscopy (FL), Fourier transform infrared spectroscopy (FTIR), UV-vis spectrophotometry (UV-vis), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Furthermore, the modified Mn-QDs have strong luminescence ability and good dispersion stability, which can be used for Cr3+ and Hg2+ double ion detection with enhanced fluorescence specificity. Cr3+/Hg2+ and negatively charged Mn-QDs are bound together by electrostatic interactions. Meanwhile, the surface of Mn-QDs is rich in functional groups, which interacts with Cr3+/Hg2+ to modify the surface traps, leading to defect passivation and exhibiting photoluminescence enhancement. For the dynamic quenching produced by the interaction of Mn-QDs with Hg2+ within 50 µM, it may be caused by the complex formation of Hg2+ trapped by the amino group on the surface of Mn-QDs. The detection limits for Cr3+ and Hg2+ were 0.80 µM and 0.16 µM, respectively. The recoveries of Cr3+ and Hg2+ ions in real water samples were 93.79-105.10% and 93.91-102.05%, respectively, by standard addition recovery test. In this work, the application of Mn-QDs in Cr3+ and Hg2+ ion detection was researched, which opens a new way for its application in the field of detecting heavy metal ions.

5.
Diabetes Metab Syndr Obes ; 15: 3181-3194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268199

RESUMO

Purpose: To evaluate the effects of Shuangdan Mingmu (SDMM) capsule on diabetic retinopathy in rats by regulating miRNAs. Materials and Methods: Streptozotocin (STZ) (50 mg/kg) was successfully used to induce diabetes in male Sprague-Dawley rats, which were randomly assigned to a group taking SDMM capsules ("diabetic+SDMM") or a control group ("diabetic"), and the normal group (n=10/group). The diabetic+SDMM capsule group received 1.89g/kg/d of SDMM capsule by gavage, whereas the other groups received the same amount of distilled water. After 12-weeks of gavage, the retina was removed from all rats for histopathological analysis, and miRNA sequencing experiments were carried out to identify the differential expression of miRNAs. These results were then confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Results: SDMM capsules improved retinal morphology, restored the number of cells in the ganglion cell layer (p<0.0001) and reduced apoptosis in all retinal layers (p values in the outer nuclear layers, inner nuclear layers and ganglion cell layers 0.0001, 0.0147, 0.0034, respectively). In addition, miRNA expression was changed in rats taking SDMM capsules. Compared with the diabetic group, six miRNAs were up-regulated and four miRNAs were down-regulated in the diabetic+SDMM capsule group. The qRT-PCR validation results showed that the expression levels of miR-450b-5p, miR-1249 and miR-155-5p were consistent with the trend of miRNA sequencing results, and were all up-regulated after SDMM capsule treatment. Target gene prediction and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed miRNAs showed that these pathways were mainly concentrated in the focal adhesions and PI3K/Akt, MAPK, and neural factor signaling pathways. Conclusion: SDMM capsules may prevent and treat diabetic retinopathy by regulating the expression of miR-450b-5p, miR-1249 and miR-155-5p.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 120956, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35168034

RESUMO

Antibiotic residues have become a public health issues, the fast detection of tetracycline (Tc) in the environment is urgently required. In this work, Ti3C2 quantum dots (Ti3C2 QDs) and Europium ions jointly constructed a ratiometric fluorescence (FL) platform for the detection of Tc, based on synergistic impact of the Foster Resonance Energy Transfer (FRET) from Ti3C2 QDs to Eu3+ ions and the Antenna Effect (AE) between Tc and Eu3+ ions. And we proposed a ratiometric FL platform for detecting Tc with good linear response range (100-1000 uM) and low detection limit (48.79 nM). Meanwhile, we applied this platform to detect a serious of ß-diketone ligands of Eu3+ ions, demonstrating the platform's versatility for this category of chemical. Furthermore, based on the color changes of QDs@Eu3+ from blue to red at 365 nm ultraviolet light, an intelligent detection smart device was built for the visual semi-quantitative detection of Tc in actual samples. We proved the applicability of the device in complicated samples and the potential for rapid, sensitive, intuitive and point-of-care detection in the field of environment, food, pharmaceutical and agriculture.


Assuntos
Pontos Quânticos , Antibacterianos , Corantes Fluorescentes/química , Limite de Detecção , Testes Imediatos , Pontos Quânticos/química , Espectrometria de Fluorescência , Tetraciclina , Titânio/química
7.
BMC Complement Med Ther ; 21(1): 118, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838689

RESUMO

BACKGROUND: Diabetic retinopathy (DR) has become a worldwide concern because of the rising prevalence rate of diabetes mellitus (DM). Despite much energy has been committed to DR research, it remains a difficulty for diabetic patients all over the world. Since apoptosis of retinal microvascular pericytes (RMPs) is the early characteristic of DR, this study aimed to reveal the mechanism of Shuangdan Mingmu (SDMM) capsule, a Chinese patent medicine, on oxidative stress-induced apoptosis of pericytes implicated with poly (ADP-ribose) polymerase (PARP) / glyceraldehyde 3-phosphate dehydrogenase (GAPDH) pathway. METHODS: Network pharmacology approach was performed to predict biofunction of components of SDMM capsule dissolved in plasma on DR. Both PARP1 and GAPDH were found involved in the hub network of protein-protein interaction (PPI) of potential targets and were found to take part in many bioprocesses, including responding to the regulation of reactive oxygen species (ROS) metabolic process, apoptotic signaling pathway, and response to oxygen levels through enrichment analysis. Therefore, in vitro research was carried out to validate the prediction. Human RMPs cultured with media containing 0.5 mM hydrogen oxide (H2O2) for 4 h was performed as an oxidative-damage model. Different concentrations of SDMM capsule, PARP1 inhibitor, PARP1 activation, and GAPDH inhibitor were used to intervene the oxidative-damage model with N-Acetyl-L-cysteine (NAC) as a contrast. Flow cytometry was performed to determine the apoptosis rate of cells and the expression of ROS. Cell counting kit 8 (CCK8) was used to determine the activity of pericytes. Moreover, nitric oxide (NO) concentration of cells supernatant and expression of endothelial nitric oxide synthase (eNOS), superoxide dismutase (SOD), B cell lymphoma 2 (BCL2), vascular endothelial growth factor (VEGF), endothelin 1 (ET1), PARP1, and GAPDH were tested through RT-qPCR, western blot (WB), or immunocytochemistry (ICC). RESULTS: Overproduction of ROS, high apoptotic rate, and attenuated activity of pericytes were observed after cells were incubated with media containing 0.5 mM H2O2. Moreover, downregulation of SOD, NO, BCL2, and GAPDH, and upregulation of VEGFA, ET1, and PARP1 were discovered after cells were exposed to 0.5 mM H2O2 in this study, which could be improved by PARP1 inhibitor and SDMM capsule in a dose-dependent way, whereas worsened by PARP1 activation and GAPDH inhibitor. CONCLUSIONS: SDMM capsule may attenuate oxidative stress-induced apoptosis of pericytes through downregulating PARP expression and upregulating GAPDH expression.


Assuntos
Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Pericitos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Transdução de Sinais
8.
Biomed Pharmacother ; 95: 1644-1653, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28954383

RESUMO

Recent evidences highlight the crucial regulatory roles of long noncoding RNAs (lncRNA) in tumor biology. LncRNA CASC7 is a ∼9.3kb lncRNA whose function is currently unknown. The present study aimed to investigate the expression of CASC7 in patients with colorectal cancer (CRC) and its effect on CRC cells. The expression levels of CASC7, miR-21 and ING3 were estimated by reverse transcription-quantitative polymerase chain reaction (RT-PCR) or western blot in CRC tissues and CRC cell lines (SW480 and HCT-116). The relationship between miR-21 and CASC7 or ING3 was analyzed by RNA immunoprecipitation (RIP), RNA pull-down and luciferase reporter assay. In addition, the biological roles of CASC7 were examined using cell counting kit-8 assay, flow cytometry, and migration and invasion assays following the downregulation or upregulation of CASC7 by small interfering RNA or pcDNA-CASC7, respectively. In this study, CASC7 expression was significantly decreased in CRC tissues and CRC cell lines. Further functional experiments suggested that CASC7 overexpression could inhibit cell viability, migration and invasion, and promote apoptosis in CRC cells. CASC7 and ING3 were both a target of miR-21 in CRC cells, and CASC7 could control ING3 expression by regulating miR-21. Moreover, we have found that CASC7 inhibited colon cancer cell proliferation and migration via miR-21/ING3 axis. These observations suggested that CASC7 played an important role in CRC pathogenesis and may be considered as a novel diagnostic marker of CRC.


Assuntos
Proliferação de Células/genética , Neoplasias Colorretais/genética , MicroRNAs/genética , RNA não Traduzido/genética , Apoptose/genética , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Regulação para Baixo , Citometria de Fluxo , Humanos , Invasividade Neoplásica/genética , RNA Interferente Pequeno/administração & dosagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA