Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Exp Bot ; 75(7): 1903-1918, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37856192

RESUMO

The plant cuticle is an important protective barrier on the plant surface, constructed mainly by polymerized cutin matrix and a complex wax mixture. Although the pathway of plant cuticle biosynthesis has been clarified, knowledge of the transcriptional regulation network underlying fruit cuticle formation remains limited. In the present work, we discovered that tomato fruits of the NAC transcription factor SlNOR-like1 knockout mutants (nor-like1) produced by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] displayed reduced cutin deposition and cuticle thickness, with a microcracking phenotype, while wax accumulation was promoted. Further research revealed that SlNOR-like1 promotes cutin deposition by binding to the promoters of glycerol-3-phosphate acyltransferase6 (SlGPAT6; a key gene for cutin monomer formation) and CUTIN DEFICIENT2 (SlCD2; a positive regulator of cutin production) to activate their expression. Meanwhile, SlNOR-like1 inhibits wax accumulation, acting as a transcriptional repressor by targeting wax biosynthesis, and transport-related genes 3-ketoacyl-CoA synthase1 (SlKCS1), ECERIFERUM 1-2 (SlCER1-2), SlWAX2, and glycosylphosphatidylinositol-anchored lipid transfer protein 1-like (SlLTPG1-like). In conclusion, SlNOR-like1 executes a dual regulatory effect on tomato fruit cuticle development. Our results provide a new model for the transcriptional regulation of fruit cuticle formation.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Ceras/metabolismo
2.
Food Chem ; 411: 135449, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36669336

RESUMO

The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.


Assuntos
Lipídeos de Membrana , Ceras , Humanos , Lipídeos de Membrana/metabolismo , Ceras/química , Frutas/química
3.
Plant J ; 112(4): 982-997, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36164829

RESUMO

Chloroplasts play a crucial role in plant growth and fruit quality. However, the molecular mechanisms of chloroplast development are still poorly understood in fruits. In this study, we investigated the role of the transcription factor SlBEL2 (BEL1-LIKE HOMEODOMAIN 2) in fruit of Solanum lycopersicum (tomato). Phenotypic analysis of SlBEL2 overexpression (OE-SlBEL2) and SlBEL2 knockout (KO-SlBEL2) plants revealed that SlBEL2 has the function of inhibiting green shoulder formation in tomato fruits by affecting the development of fruit chloroplasts. Transcriptome profiling revealed that the expression of chloroplast-related genes such as SlGLK2 and SlLHCB1 changed significantly in the fruit of OE-SlBEL2 and KO-SlBEL2 plants. Further analysis showed that SlBEL2 could not only bind to the promoter of SlGLK2 to inhibit its transcription, but also interacted with the SlGLK2 protein to inhibit the transcriptional activity of SlGLK2 and its downstream target genes. SlGLK2 knockout (KO-SlGLK2) plants exhibited a complete absence of the green shoulder, which was consistent with the fruit phenotype of OE-SlBEL2 plants. SlBEL2 showed an expression gradient in fruits, in contrast with that reported for SlGLK2. In conclusion, our study reveals that SlBEL2 affects the formation of green shoulder in tomato fruits by negatively regulating the gradient expression of SlGLK2, thus providing new insights into the molecular mechanism of fruit green shoulder formation.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Frutas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Ombro , Regulação da Expressão Gênica de Plantas
4.
New Phytol ; 235(5): 1913-1926, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35686614

RESUMO

Flavor-imparting volatile chemicals accumulate as fruits ripen, making major contributions to taste. The NAC transcription factor nonripening (NAC-NOR) and DNA demethylase 2 (SlDML2) are essential for tomato fruit ripening, but details of the potential roles and the relationship between these two regulators in the synthesis of volatiles are lacking. Here, we show substantial reductions in fatty acid and carotenoid-derived volatiles in tomato slnor and sldml2 mutants. An unexpected finding is the redundancy and divergence in volatile profiles, biosynthetic gene expression, and DNA methylation in slnor and sldml2 mutants relative to wild-type tomato fruit. Reduced transcript levels are accompanied by hypermethylation of promoters, including the NAC-NOR target gene lipoxygenase (SlLOXC) that is involved in fatty acid-derived volatile synthesis. Interestingly, NAC-NOR activates SlDML2 expression by directly binding to its promoter both in vitro and in vivo. Meanwhile, reduced NAC-NOR expression in the sldml2 mutant is accompanied by hypermethylation of its promoter. These results reveal a relationship between SlDML2-mediated DNA demethylation and NAC-NOR during tomato fruit ripening. In addition to providing new insights into the metabolic modulation of flavor volatiles, the outcome of our study contributes to understanding the genetics and control of fruit ripening and quality attributes in tomato.


Assuntos
Solanum lycopersicum , DNA , Ácidos Graxos/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Cells ; 11(3)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159333

RESUMO

The NAC transcription factor (TF) family is one of the largest plant-specific TF families and its members are involved in the regulation of many vital biological processes during plant growth and development. Recent studies have found that NAC TFs play important roles during the ripening of fleshy fruits and the development of quality attributes. This review focuses on the advances in our understanding of the function of NAC TFs in different fruits and their involvement in the biosynthesis and signal transduction of plant hormones, fruit textural changes, color transformation, accumulation of flavor compounds, seed development and fruit senescence. We discuss the theoretical basis and potential regulatory models for NAC TFs action and provide a comprehensive view of their multiple roles in modulating different aspects of fruit ripening and quality.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Plant J ; 108(5): 1317-1331, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34580960

RESUMO

Fruit ripening in tomato (Solanum lycopersicum) is the result of selective expression of ripening-related genes, which are regulated by transcription factors (TFs). The NAC (NAM, ATAF1/2, and CUC2) TF family is one of the largest families of plant-specific TFs and members are involved in a variety of plant physiological activities, including fruit ripening. Fruit ripening-associated NAC TFs studied in tomato to date include NAC-NOR (non-ripening), SlNOR-like1 (non-ripening like1), SlNAC1, and SlNAC4. Considering the large number of NAC genes in the tomato genome, there is little information about the possible roles of other NAC members in fruit ripening, and research on their target genes is lacking. In this study, we characterize SlNAM1, a NAC TF, which positively regulates the initiation of tomato fruit ripening via its regulation of ethylene biosynthesis. The onset of fruit ripening in slnam1-deficient mutants created by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) technology was delayed, whereas fruit ripening in OE-SlNAM1 lines was accelerated compared with the wild type. The results of RNA-sequencing (RNA-seq) and promoter analysis suggested that SlNAM1 directly binds to the promoters of two key ethylene biosynthesis genes (1-aminocyclopropane-1-carboxylate synthase: SlACS2 and SlACS4) and activates their expression. This hypothesis was confirmed by electrophoretic mobility shift assays and dual-luciferase reporter assay. Our findings provide insights into the mechanisms of ethylene production and enrich understanding of the tomato fruit ripening regulatory network.


Assuntos
Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Frutas/genética , Frutas/fisiologia , Liases/genética , Liases/metabolismo , Solanum lycopersicum/fisiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
J Exp Bot ; 71(12): 3560-3574, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32338291

RESUMO

The tomato non-ripening (nor) mutant generates a truncated 186-amino-acid protein (NOR186) and has been demonstrated previously to be a gain-of-function mutant. Here, we provide more evidence to support this view and answer the open question of whether the NAC-NOR gene is important in fruit ripening. Overexpression of NAC-NOR in the nor mutant did not restore the full ripening phenotype. Further analysis showed that the truncated NOR186 protein is located in the nucleus and binds to but does not activate the promoters of 1-aminocyclopropane-1-carboxylic acid synthase2 (SlACS2), geranylgeranyl diphosphate synthase2 (SlGgpps2), and pectate lyase (SlPL), which are involved in ethylene biosynthesis, carotenoid accumulation, and fruit softening, respectively. The activation of the promoters by the wild-type NOR protein can be inhibited by the mutant NOR186 protein. On the other hand, ethylene synthesis, carotenoid accumulation, and fruit softening were significantly inhibited in CR-NOR (CRISPR/Cas9-edited NAC-NOR) fruit compared with the wild-type, but much less severely affected than in the nor mutant, while they were accelerated in OE-NOR (overexpressed NAC-NOR) fruit. These data further indicated that nor is a gain-of-function mutation and NAC-NOR plays a significant role in ripening of wild-type fruit.


Assuntos
Solanum lycopersicum , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Front Plant Sci ; 10: 792, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275340

RESUMO

Tomato fruit ripening is a complex process, which determines the formation of fruit quality. Many factors affect fruit ripening, including environmental conditions and genetic factors. Transcription factors (TFs) play key roles in regulating fruit ripening and quality formation. Current studies have found that the TDR4 gene is an important TF for tomato fruit ripening, but its effects on fruit metabolism and quality are less well studied. In this study, suppression of TDR4 gene expression obtained through virus-induced gene silencing (VIGS) technology resulted in an orange pericarp phenotype. Transcriptomic analysis of TDR4-silenced fruit showed changes in the expression of genes involved in various metabolic pathways, including amino acid and flavonoid biosynthesis pathways. Metabolomic analysis showed that levels of several amino acids including phenylalanine and tyrosine, and organic acids were reduced in TDR4-silenced fruit, while α-tomatine accumulated in TDR4-silenced fruit. Taken together, our RNA-seq and metabolomics analyses of TDR4-silenced fruit showed that TDR4 is involved in ripening and nutrient synthesis in tomato fruit, and is therefore an important regulator of fruit quality.

10.
Hortic Res ; 6: 39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774962

RESUMO

Tomato is considered as the genetic model for climacteric fruits, in which three major players control the fruit ripening process: ethylene, ripening transcription factors, and DNA methylation. The fruitENCODE project has now shown that there are multiple transcriptional circuits regulating fruit ripening in different species, and H3K27me3, instead of DNA methylation, plays a conserved role in restricting these ripening pathways. In addition, the function of the core tomato ripening transcription factors is now being questioned. We have employed CRISPR/Cas9 genome editing to mutate the SBP-CNR and NAC-NOR transcription factors, both of which are considered as master regulators in the current tomato ripening model. These plants only displayed delayed or partial non-ripening phenotypes, distinct from the original mutant plants, which categorically failed to ripen, suggesting that they might be gain-of-function mutants. Besides increased DNA methylation genome-wide, the original mutants also have hyper-H3K27me3 in ripening gene loci such as ACS2, RIN, and TDR4. It is most likely that multiple genetic and epigenetic factors have contributed to their strong non-ripening phenotypes. Hence, we propose that the field should move beyond these linear and two-dimensional models and embrace the fact that important biological processes such as ripening are often regulated by highly redundant network with inputs from multiple levels.

11.
Hortic Res ; 5: 75, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30588320

RESUMO

Ripening of the model fruit tomato (Solanum lycopersicum) is controlled by a transcription factor network including NAC (NAM, ATAF1/2, and CUC2) domain proteins such as No-ripening (NOR), SlNAC1, and SlNAC4, but very little is known about the NAC targets or how they regulate ripening. Here, we conducted a systematic search of fruit-expressed NAC genes and showed that silencing NOR-like1 (Solyc07g063420) using virus-induced gene silencing (VIGS) inhibited specific aspects of ripening. Ripening initiation was delayed by 14 days when NOR-like1 function was inactivated by CRISPR/Cas9 and fruits showed obviously reduced ethylene production, retarded softening and chlorophyll loss, and reduced lycopene accumulation. RNA-sequencing profiling and gene promoter analysis suggested that genes involved in ethylene biosynthesis (SlACS2, SlACS4), color formation (SlGgpps2, SlSGR1), and cell wall metabolism (SlPG2a, SlPL, SlCEL2, and SlEXP1) are direct targets of NOR-like1. Electrophoretic mobility shift assays (EMSA), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR), and dual-luciferase reporter assay (DLR) confirmed that NOR-like1 bound to the promoters of these genes both in vitro and in vivo, and activated their expression. Our findings demonstrate that NOR-like1 is a new positive regulator of tomato fruit ripening, with an important role in the transcriptional regulatory network.

12.
Front Plant Sci ; 9: 437, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706975

RESUMO

Steroidal glycoalkaloids (SGAs) are cholesterol-derived specialized metabolites produced by Solanaceous plant species. They contribute to pathogen defense but are considered as anti-nutritional compounds and toxic to humans. Although the genes involved in the SGA biosynthetic pathway have been successfully cloned and identified, transcription factors regulating this pathway are still poorly understood. We report that silencing tomato light signal transduction transcription factors ELONGATED HYPOCOTYL 5 (SlHY5) and PHYTOCHROME INTERACTING FACTOR3 (SlPIF3), by virus-induced gene silencing (VIGS), altered glycoalkaloids levels in tomato leaves compared to control plant. Electrophoretic mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) analysis confirmed that SlHY5 and SlPIF3 bind to the promoter of target genes of GLYCOALKALOID METABOLISM (GAME1, GAME4, GAME17), affecting the steady-state concentrations of transcripts coding for SGA pathway enzymes. The results indicate that light-signaling transcription factors HY5 and PIF3 regulate the abundance of SGAs by modulating the transcript levels of these GAME genes. This insight into the regulation of SGA biosynthesis can be used for manipulating the level of these metabolites in crops.

13.
Plant J ; 94(6): 1126-1140, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29659108

RESUMO

Chloroplast development and chlorophyll(Chl)metabolism in unripe tomato contribute to the growth and quality of the fruit, however these mechanisms are poorly understood. In this study, we initially investigated seven homeobox-containing transcription factors (TFs) with specific ripening-associated expression patterns using virus-induced gene silencing (VIGS) technology and found that inhibiting the expression of one of these TFs, BEL1-LIKE HOMEODOMAIN11 (SlBEL11), significantly increased Chl levels in unripe tomato fruit. This enhanced Chl accumulation was further validated by generating stable RNA interference (RNAi) transgenic lines. RNA sequencing (RNA-seq) of RNAi-SlBEL11 fruit at the mature green (MG) stage showed that 48 genes involved in Chl biosynthesis, photosynthesis and chloroplast development were significantly upregulated compared with the wild type (WT) fruit. Genomic global scanning for Homeobox TF binding sites combined with RNA-seq differential gene expression analysis showed that 22 of these 48 genes were potential target genes of SlBEL11 protein. These genes included Chl biosynthesis-related genes encoding for protochlorophyllide reductase (POR), magnesium chelatase H subunit (CHLH) and chlorophyllide a oxygenase (CAO), and chloroplast development-related genes encoding for chlorophyll a/b binding protein (CAB), homeobox protein knotted 2 (TKN2) and ARABIDOPSIS PSEUDO RESPONSE REGULATOR 2-LIKE (APRR2-like). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation quantitative polymerase chain reaction (PCR) (ChIP-qPCR) assays were employed to verify that SlBEL11 protein could bind to the promoters for TKN2, CAB and POR. Taken together, our findings demonstrated that SlBEL11 plays an important role in chloroplast development and Chl synthesis in tomato fruit.


Assuntos
Clorofila/metabolismo , Cloroplastos/metabolismo , Frutas/metabolismo , Proteínas de Homeodomínio/fisiologia , Proteínas de Plantas/fisiologia , Solanum lycopersicum/metabolismo , Fatores de Transcrição/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Solanum lycopersicum/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
PLoS One ; 12(12): e0189481, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29236780

RESUMO

Glycoalkaloids are toxic compounds that are synthesized by many Solanum species. Glycoalkaloid biosynthesis is influenced by plant genetic and environmental conditions. Although many studies have shown that light is an important factor affecting glycoalkaloid biosynthesis, the specific mechanism is currently unknown. Chlorophyll and carotenoid biosynthesis depend on light signal transduction and share some intermediate metabolites with the glycoalkaloid biosynthetic pathway. Here, we used virus-induced gene silencing to silence genes encoding phytoene desaturase (PDS) and magnesium chelatase (CHLI and CHLH) to reduce chlorophyll and carotenoid levels in eggplant leaves. Quantification of carotenoid and chlorophyll levels is analyzed by LC/PDA/APCI/MS and semipolar metabolite profiling by LC/HESI/MS. Notably, the resulting lines showed decreases in glycoalkaloid production. We further found that the expression of some genes involved in the production of glycoalkaloids and other metabolites were suppressed in these silenced lines. Our results indicate that photosynthetic pigment accumulation affects steroidal glycoalkaloid biosynthesis in eggplant leaves. This finding lays the foundation for reducing the levels of endogenous antinutritional compounds in crops.


Assuntos
Alcaloides/biossíntese , Oxirredutases/metabolismo , Fitocromo/metabolismo , Folhas de Planta/metabolismo , Solanum melongena/metabolismo , Esteróis/biossíntese , Cromatografia Líquida , Espectrometria de Massas , Solanum melongena/enzimologia
15.
Sci Rep ; 6: 38664, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929131

RESUMO

Ripening is an important stage of fruit development. To screen the genes associated with pigment formation in tomato fruit, a suppression subtractive hybridization (SSH) cDNA library was constructed by using tomato fruit in the green ripe and break ripe stages, and 129 differential genes were obtained. Using redness as a screening marker, virus-induced gene silencing (VIGS) of the differential genes was performed with a sprout vacuum-infiltration system (SVI). The results showed that silencing the SlNAP7 gene affected the chloroplast development of tomato leaves, manifesting as a photo-bleaching phenotype, and silenced fruit significantly affected the accumulation of lycopene, manifested as a yellow phenotype. In our study, we found that silencing the SlNAP7 gene downregulates the expression of the POR and PORA genes and destroys the normal development of the chloroplast. The expression of related genes included in the lycopene biosynthesis pathway was not significantly changed, but lycopene accumulation was significantly reduced in tomato fruit. Perhaps it was caused by the destruction of the chromoplast, which leads to the oxidation of lycopene. The results show that the SlNAP7 gene influences chloroplast development and lycopene accumulation in tomato.


Assuntos
Carotenoides/metabolismo , Inativação Gênica , Proteínas de Plantas/genética , Plastídeos/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Clorofila/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes Reporter , Licopeno , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Técnicas de Hibridização Subtrativa , Tilacoides/metabolismo
16.
PLoS One ; 11(12): e0168287, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27973616

RESUMO

Ethylene is crucial in climacteric fruit ripening. The ethylene signal pathway regulates several physiological alterations such as softening, carotenoid accumulation and sugar level reduction, and production of volatile compounds. All these physiological processes are controlled by numerous genes and their expression simultaneously changes at the onset of ripening. Ethylene insensitive 2 (EIN2) is a key component for ethylene signal transduction, and its mutation causes ethylene insensitivity. In tomato, silencing SlEIN2 resulted in a non-ripening phenotype and low ethylene production. RNA sequencing of SlEIN2-silenced and wild type tomato, and differential gene expression analyses, indicated that silencing SlEIN2 caused changes in more than 4,000 genes, including those related to photosynthesis, defense, and secondary metabolism. The relative expression level of 28 genes covering ripening-associated transcription factors, ethylene biosynthesis, ethylene signal pathway, chlorophyll binding proteins, lycopene and aroma biosynthesis, and defense pathway, showed that SlEIN2 influences ripening inhibitor (RIN) in a feedback loop, thus controlling the expression of several other genes. SlEIN2 regulates many aspects of fruit ripening, and is a key factor in the ethylene signal transduction pathway. Silencing SlEIN2 ultimately results in lycopene biosynthesis inhibition, which is the reason why tomato does not turn red, and this gene also affects the expression of several defense-associated genes. Although SlEIN2-silenced and green wild type fruits are similar in appearance, their metabolism is significantly different at the molecular level.


Assuntos
Etilenos/química , Frutas/fisiologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Solanum lycopersicum/genética , Transcriptoma , Agrobacterium tumefaciens , Carotenoides/química , Clorofila/química , Clonagem Molecular , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Vetores Genéticos , Licopeno , Solanum lycopersicum/fisiologia , Fenótipo , Fotossíntese , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo
17.
PLoS One ; 11(10): e0164335, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27732677

RESUMO

Natural mutants of the Non-ripening (Nor) gene repress the normal ripening of tomato fruit. The molecular mechanism of fruit ripening regulation by the Nor gene is unclear. To elucidate how the Nor gene can affect ripening and fruit quality at the protein level, we used the fruits of Nor mutants and wild-type Ailsa Craig (AC) to perform iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The Nor mutation altered tomato fruit ripening and affected quality in various respects, including ethylene biosynthesis by down-regulating the abundance of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), pigment biosynthesis by repressing phytoene synthase 1 (PSY1), ζ-carotene isomerase (Z-ISO), chalcone synthase 1 (CHS1) and other proteins, enhancing fruit firmness by increasing the abundance of cellulose synthase protein, while reducing those of polygalacturonase 2 (PG2) and pectate lyase (PL), altering biosynthesis of nutrients such as carbohydrates, amino acids, and anthocyanins. Conversely, Nor mutation also enhanced the fruit's resistance to some pathogens by up-regulating the expression of several genes associated with stress and defense. Therefore, the Nor gene is involved in the regulation of fruit ripening and quality. It is useful in the future as a means to improve fruit quality in tomato.


Assuntos
Frutas/genética , Mutação , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Etilenos/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Pigmentos Biológicos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico
18.
New Phytol ; 212(3): 627-636, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27411159

RESUMO

Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL) or the isochorismate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We investigated the relative contributions of PAL and ICS to defense-related SA accumulation in soybean (Glycine max). Soybean plants silenced for five PAL isoforms or two ICS isoforms were analyzed for SA concentrations and SA-derived defense responses to the hemibiotrophic pathogens Pseudomonas syringae and Phytophthora sojae. We show that, unlike in Arabidopsis, PAL and ICS pathways are equally important for pathogen-induced SA biosynthesis in soybean. Knock-down of either pathway shuts down SA biosynthesis and abrogates pathogen resistance. Moreover, unlike in Arabidopsis, pathogen infection is associated with the suppression of ICS gene expression. Pathogen-induced biosynthesis of SA via the PAL pathway correlates inversely with phenylalanine concentrations. Although infections with either virulent or avirulent strains of the pathogens increase SA concentrations, resistance protein-mediated response to avirulent P. sojae strains may function in an SA-independent manner. These results show that PAL- and ICS-catalyzed reactions function cooperatively in soybean defense and highlight the importance of PAL in pathogen-induced SA biosynthesis.


Assuntos
Vias Biossintéticas , Glycine max/enzimologia , Transferases Intramoleculares/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Transferases Intramoleculares/genética , Isoenzimas/metabolismo , Fenilalanina Amônia-Liase/genética , Phytophthora/fisiologia , Doenças das Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Pseudomonas syringae/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glycine max/genética , Glycine max/microbiologia
19.
PLoS One ; 11(6): e0156228, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27258320

RESUMO

Solanum rostratum is a "super weed" that grows fast, is widespread, and produces the toxin solanine, which is harmful to both humans and other animals. To our knowledge, no study has focused on its molecular biology owing to the lack of available transgenic methods and sequence information for S. rostratum. Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants; therefore, in the present study, we aimed to establish tobacco rattle virus (TRV)-derived VIGS in S. rostratum. The genes for phytoene desaturase (PDS) and Chlorophyll H subunit (ChlH) of magnesium protoporphyrin chelatase were cloned from S. rostratum and used as reporters of gene silencing. It was shown that high-efficiency VIGS can be achieved in the leaves, flowers, and fruit of S. rostratum. Moreover, based on our comparison of three different types of infection methods, true leaf infection was found to be more efficient than cotyledon and sprout infiltration in long-term VIGS in multiple plant organs. In conclusion, the VIGS technology and tomato genomic sequences can be used in the future to study gene function in S. rostratum.


Assuntos
Vírus de Plantas/fisiologia , Solanum/genética , Flores/genética , Flores/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus de Plantas/genética
20.
FEBS Lett ; 587(16): 2517-22, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23850889

RESUMO

To investigate the autolysis pattern and activation of metacaspase in higher plants, the biochemical characteristics of purified recombinant type II metacaspase (LeMCA1) from tomato were explored. Western blotting analysis indicated that four cleaved bands were formed; two N-terminal fragments and two C-terminal fragments. N-terminal sequencing confirmed that LeMCA1 cleaves at Lys223 and Arg332. Site mutants indicated that catalytic Cys139, cleaved Lys223, Arg332 and predicted calcium binding Asp116/Asp117 are the key residues that are responsible for its Ca²âº and pH dependent activation. The cleavage of the full-size fragment seemed crucial for the activation of LeMCA1 in vitro.


Assuntos
Caspases/química , Proteínas de Plantas/química , Solanum lycopersicum/enzimologia , Cálcio/química , Caspases/genética , Ativação Enzimática , Solanum lycopersicum/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Peptídeos/química , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA