Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bull Entomol Res ; 112(5): 691-696, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35382913

RESUMO

Sampling flower-visiting insects in agricultural fields at large spatial and temporal scales is significant for understanding local insect pollinator communities. The most commonly used method, pan trap, has been criticized due to its attractant bias. A window trap (also referred to as the flight-intercept trap) is a non-attractant sampling method, which has been applied in forests and grasslands, but rarely in agricultural fields. We aim to test whether we can replace pan traps with window traps in agricultural fields by comparing species richness and species composition between the two methods, and to show whether flower-visiting insects collected in both traps can reflect flower-visiting activity recorded by camera observation. We conducted a 2-year study to compare the performance of these sampling methods in an oilseed rape field. Results showed that the relative abundance of dominant flower-visiting species was highly correlated between the window trap and the pan trap samples, while window traps caught more individuals and higher (rarefied) species richness than pan traps. The species composition of window traps was more similar to each other than that of pan traps. The proportion of honey bees (Apis spp.) collected in both traps underestimated their flower-visiting activity recorded by camera observations, while sweat bees (Halictidae) and butterflies (Lepidoptera) were overestimated. Our study suggests that the window trap has the potential to serve as an alternative sampling method of flower-visiting insects to the pan trap. However, we need to be cautious when using specimens caught in both traps as a proxy of their flower-visiting activity.


Assuntos
Brassica napus , Borboletas , Abelhas , Animais , Polinização , Flores , Insetos
2.
Insect Sci ; 25(2): 273-283, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27791340

RESUMO

Heat shock proteins (Hsps) have been linked to stresses and winter diapause in insects, but whether they are components of summer diapause is still unknown. In this study, complementary DNAs of Hsp90 from Pieris melete, Pieris rapae and Pieris canidia named PmHsp90, PrHsp90 and PcHsp90, respectively, were cloned and sequenced. The deduced amino acid sequence consisted of 718 amino acid residues with a putative molecular mass of 82.6, 82.6 and 82.7 kDa, respectively. The amino acid sequences contained all of the five conserved signature motifs in the Hsp90 family and a bHLH protein folding activity region. The differential expression pattern of PmHsp90 in response to summer diapause and winter diapause, which are related to heat/cold stress, was investigated. Cold stress induced Hsp90 up-regulation in summer and winter diapause pupae, but not in non-diapause individuals. Heat shock up-regulated PmHsp90 gradually with an increase in temperature in summer diapause, and PmHsp90 was rapidly up-regulated in winter diapause. After 30 min heat shock at 39°C, substantial up-regulation of PmHsp90 transcript levels were observed both in summer and winter diapause. However, in non-diapause a relatively stable expression was found under different durations of 39°C heat shock. Compared to the optimal treatment of 18°C for diapause development, a high temperature acclimation of 31°C induced PmHsp90 up-regulation in summer diapause, whereas a low temperature acclimation of 4°C induced up-regulation in winter diapause. The current results indicate that Hsp90 may play an important role in response to heat/cold stress both in summer and winter diapause.


Assuntos
Borboletas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Estresse Fisiológico , Animais , Borboletas/genética , Temperatura Baixa , Diapausa de Inseto , Feminino , Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Temperatura Alta , Proteínas de Insetos/genética , Masculino , Pupa/metabolismo , Análise de Sequência de DNA
3.
J Therm Biol ; 61: 115-118, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27712652

RESUMO

Temperature is a key environmental factor for ectotherms and affects a large number of life history traits. In the present study, development time from hatching to pupation and adult eclosion, pupal and adult weights of the rice stem borer, Chilo suppressalis were examined at 22, 25, 28 and 31°C under L18:D 6. Larval and pupal times were significantly decreased with increasing rearing temperature and growth rate was positively correlated with temperature. Larval and pupal developmental times were not significantly different between females and males. The relationship between body weight and rearing temperature in C. suppressalis did not follow the temperature-size rule (TSR), both males and females gained the highest body weight at 31°C. Females were significantly larger than males at all temperatures, showing a female biased sex size dimorphism (SSD). Contrary to Rensch's rule, SSD and body weight in C. suppressalis tended to increase with rising temperature. Male pupae lost significantly more weight at metamorphosis compared to females. We discuss the adaptive significance of the reverse-TSR in the moth's life history.


Assuntos
Lepidópteros/crescimento & desenvolvimento , Animais , Tamanho Corporal , Peso Corporal , Feminino , Larva/crescimento & desenvolvimento , Masculino , Metamorfose Biológica , Pupa/crescimento & desenvolvimento , Caracteres Sexuais , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA