Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Environ Geochem Health ; 46(4): 135, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483670

RESUMO

Some Polycyclic Aromatic Compounds (PACs) such as nitrated-PAHs (NPAHs), oxygenated-PAHs (OPAHs) and methyl-PAHs (MPAHs) have attracted significant concern due to derivatives have greater potential to be more toxic at low environmental concentrations compared to their PPAHs, particularly in petrochemical industrial region and its surrounding areas surface soils in China. Hence, this article provides an insight into the fate, sources, impacts, and relevance to the external environment of PAH-derivatives based on important emissions source. Moreover, prospective health risk due to their exposure has also been discussed. In this study, the concentration (10-3 ng/g) of Æ©18PPAHs, Æ©11MPAHs, Æ©12NPAHs, and Æ©4OPAHs in the park were 9.67 ± 1.40, 3.24 ± 0.54, 0.03 ± 0.02 and 0.19 ± 0.65, respectively, which were 4.47, 3.89, 2.04 and 1.17 times than of them surrounding the region. A decreasing trend of the low molecular weight (2-4Rings) contribution to the total amount of PAHs, while the fraction of high molecular weight (5-6Rings) species showed the opposite trend. According to the principal component analysis (PCA) and diagnostic ratios indicated PAHs in the soil samples have mixed sources from industrial activities, solid fuel combustion, and heavy traffic. Despite the high concentrations of MPAHs and OPAHs, the toxicity equivalency quotients (TEQs) of them were not calculated due to the lack of toxic equivalent factors (TEF), thus current studies on PAH and derivatives could have underestimated their exposure risks. The quality and sustainable management of soils are crucial for human health and sustainable development, while there is lack of public awareness of the severe issue of soil pollution. It is recommended to conduct more intensive monitoring and regional assessments in the future.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes do Solo , Humanos , Compostos Policíclicos/análise , Monitoramento Ambiental , Solo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Medição de Risco
2.
Toxics ; 12(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535912

RESUMO

Coke production is an important source of environmental polycyclic aromatic compounds (PACs), including parent polycyclic aromatic hydrocarbons (PAHs) and their derivatives. The focus near coking plants has primarily been on parent-PAH contamination, with less attention given to highly toxic derivatives. In this study, soil samples were collected from both within and outside of a coking plant. The concentrations of parent-PAHs and their derivatives, including methylated-PAHs, oxygenated-PAHs, and nitrated-PAHs, were examined. Spatial interpolation was employed to determine their spatial distribution patterns. Methods for identifying potential sources and conducting incremental lifetime cancer risk analysis were used. This could achieve a comprehensive understanding of the status of PAC pollution and the associated health risks caused by coke production. The concentrations of total PACs inside the plant ranged from 7.4 to 115.8 mg/kg, higher than those outside (in the range of 0.2 to 65.7 mg/kg). The spatial distribution of parent-PAH concentration and their derivatives consistently decreased with increasing distance from the plant. A significant positive correlation (p < 0.05) among parent-PAHs and their derivatives was observed, indicating relatively consistent sources. Based on diagnostic ratios, the potential emission sources of soil PACs could be attributed to coal combustion and vehicle emissions, while principal component analysis-multiple linear regression further indicated that primary emissions and secondary formation jointly influenced the PAC content, accounting for 60.4% and 39.6%, respectively. The exposure risk of soil PACs was dominated by 16 priority control PAHs; the non-priority PAHs' contribution to the exposure risk was only 6.4%.

3.
Environ Geochem Health ; 45(11): 7829-7839, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37486413

RESUMO

Environmental persistent free radicals (EPFRs) are receiving growing concerns owing to their potentially adverse impacts on human health. Road dust is one important source of air pollution in most cities and may pose significant health risks. Characteristics of EPFRs in urban road dusts and its formation mechanism(s) are still rarely studied. Here, we evaluated occurrence and size distributions of EPFRs in road dusts from different functional areas of an urban city, and assessed relationship between EPFRs and some transition metals. Strong electron paramagnetic resonance signals of 6.01 × 1016 - 1.3 × 1019 spins/g with the mean g value of 2.0029 ± 0.0019 were observed, indicating that EPFRs consisted of a mixture of C-centered radicals, and C-centered radicals with an adjacent oxygen atom in the urban road dust. Much more EPFRs enriched in finer dust particles. EPFRs significantly correlated with the total Fe, but not water-soluble Fe, suggesting different impacts of water-soluble and insoluble metals in the formation of EFPRs. Health risk assessment results indicated high risk potentials via the ingestion and dermal exposure to EPFRs in road dusts. Future studies are calling to look into formation mechanisms of EPFRs in urban road dusts and to quantitatively evaluate its potential risks on human health.


Assuntos
Poluição do Ar , Elementos de Transição , Humanos , Poeira/análise , Radicais Livres , Cidades , Monitoramento Ambiental
4.
Environ Res ; 231(Pt 3): 116268, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257738

RESUMO

To investigate the dynamical transmission behavior of pollutants and explore the roles played by monitoring stations in regional air pollutants transportation, we constructed a new model for the dynamical transmission index by adopting a statistics model that employs complex network analysis along with terrain data, meteorological variables, and air quality data. The study is conducted in Beijing-Tianjin-Hebei region with 70 stations in 13 cities. The findings indicated that the regional dynamical transmission networks were characterized by the participation of 67 out of 70 stations, as determined by node number. Among the model characteristics, the average path length and the average clustering coefficient, within the ranges of 2.08-2.32 and 0.26-0.51, respectively, maintained reasonable small-world characteristic. For the seasonal transmission features, the networks for PM2.5, PM10 in winter, and O3 in summer shared similar modeling characteristics with those of yearly networks. This suggested that the networks for these two seasons could represent the yearly transmission features. By employing the entropy weight method, the key monitoring stations numbered 1011 A, 1026 A, and 1010 A, which are located in Tianjin, Shijiazhuang, and Beijing, exerted significant impacts on air pollution transmission path in cities. The novel model has demonstrated its soundness and effectiveness in terms of capturing the behavior of transmission as well as the distinguishing roles of these crucial monitoring stations. This methodology could be employed for the construction of additional monitoring stations, identification of possible pollution sources, and prioritization of key pollution areas, thus providing valuable insights for environmental protection and management.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Pequim , Material Particulado/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , China , Cidades
5.
J Hazard Mater ; 453: 131322, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043851

RESUMO

A nationwide study of the occurrence, distribution, potential drivers, and ecological risks of 24 quinolone antibiotics (QNs) in 74 Chinese sludge samples from 48 wastewater treatment plants (WWTPs) was conducted. In domestic sludge, the ∑QNs concentrations were  3rd-generation QNs > 4th-generation QNs > 1st-generation QNs. Meanwhile, abundant veterinary and human/veterinary quinolones (

Assuntos
Quinolonas , Poluentes Químicos da Água , Humanos , Esgotos/análise , Moxifloxacina , Poluentes Químicos da Água/análise , Antibacterianos/análise , Quinolonas/análise , Medição de Risco , Ofloxacino , China , Monitoramento Ambiental
6.
Environ Sci Pollut Res Int ; 30(20): 58882-58906, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36997788

RESUMO

Severe air pollution and urban heat islands (UHI) intensity (UHII) are two challenging problems that have attracted wide attention in populated cities. However, previous studies mostly focused on the relationship between fine particulate matter (PM2.5) and UHII, but how UHII responds to the interactions between radiative effects (direct effect (DE), indirect effect (IDE) with slope and shading effects (SSE)) and PM2.5 during heavy pollution is still unclear, especially in the cold region. Therefore, this study explores the synergistic interactions between PM2.5 and radiative effects in influencing UHII during a heavy pollution event in the cold-megacity of Harbin-China. Hence, we designed four scenarios: non-aerosol radiative feedback (NARF), DE, IDE, and combined effects (DE + IDE + SSE) in December 2018 (clear-episode) and December 2019 (heavy-haze-episode) using numerical modeling. The results showed that the radiative effects influenced the spatial distribution of PM2.5 concentration leading to a mean drop in 2-m air-temperature by approximately 0.67 °C (downtown) and 1.48 °C (satellite-town) between the episodes. The diurnal-temporal variations revealed that the daytime and nighttime UHIIs were strengthened in the downtown during the heavy-haze-episode, while a reverse effect was observed in the satellite-town. Interestingly, during the heavy-haze-episode, the considerable difference between excellent and heavily polluted PM2.5 levels showed a decrease in UHIIs (1.32 °C, 1.32 °C, 1.27 °C, and 1.20 °C) due to the radiative effects (NARF, DE, IDE, and (DE + IDE + SSE)), respectively. In assessing other pollutants' interactions with the radiative effects, PM10 and NOx had a considerable impact on the UHII during the heavy-haze episode while O3 and SO2 were discovered to be very low in both episodes. Moreover, the SSE has uniquely influenced UHII, especially during the heavy-haze-episode. Therefore, insight from this study provides an understanding of how UHII responds uniquely in the cold region, which in turn could help to formulate effective policies and co-mitigation strategies for air pollution and UHI problems.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Cidades , Temperatura Alta , Poluição do Ar/análise , Material Particulado/análise , Estações do Ano , China , Monitoramento Ambiental/métodos , Aerossóis/análise
7.
Environ Res ; 221: 115282, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36639012

RESUMO

To inhibit the COVID-19 (Coronavirus disease 2019) outbreak, unprecedented nationwide lockdowns were implemented in China in early 2020, resulting in a marked reduction of anthropogenic emissions. However, reasons for the insignificant improvement in air quality in megacities of northeast China, including Shenyang, Changchun, Jilin, Harbin, and Daqing, were scarcely reported. We assessed the influences of meteorological conditions and changes in emissions on air quality in the five megacities during the COVID-19 lockdown (February 2020) using the WRF-CMAQ model. Modeling results indicated that meteorology contributed a 14.7% increment in Air Quality Index (AQI) averaged over the five megacities, thus, the local unfavorable meteorology was one of the causes to yield little improved air quality. In terms of emission changes, the increase in residential emissions (+15%) accompanied by declining industry emissions (-15%) and transportation (-90%) emissions resulted in a slight AQI decrease of 3.1%, demonstrating the decrease in emissions associated with the lockdown were largely offset by the increment in residential emissions. Also, residential emissions contributed 42.3% to PM2.5 concentration on average based on the Integrated Source Apportionment tool. These results demonstrated the key role residential emissions played in determining air quality. The findings of this study provide a scenario that helps make appropriate emission mitigation measures for improving air quality in this part of China.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , COVID-19/epidemiologia , Poluentes Atmosféricos/análise , Cidades , Material Particulado/análise , Monitoramento Ambiental , Controle de Doenças Transmissíveis , Poluição do Ar/análise , China/epidemiologia
8.
J Hazard Mater ; 438: 129457, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779400

RESUMO

Formaldehyde is deemed to be an indispensable industrial product that has been widely applied in manufacture of resins, drugs, building materials, etc. It has been widely accepted that, nevertheless, residual formaldehyde will cause pathogen reactions, even leading to cancers like leukemia. Thus, a facile and efficient approach has been designed to achieve the determination of formaldehyde by ultraviolet and visible (UV-vis) spectrophotometry in liquid media. In detail, O-(carboxymethyl) hydroxylamine (C2H5NO3·0.5HCl) is chosen as the detection reagent for the specific recognition of formaldehyde on account of its unique aminooxy (-O-NH2) which can react with formaldehyde to form oxime bonds (O-NCH2), accompanied with the only by-product of H2O. Likewise, this simple and sensitive detection approach based on the chemical detection reagent C2H5NO3·0.5HCl can also be applied to the determination of other aldehyde homologs with carbonyl groups including acetaldehyde, acetone, benzaldehyde, 1, 4-phthalaldehyde. As a result, all the UV absorbances of analytes display remarkable linear detection relationships. The limits of detection (LOD) and limits of quantitation (LOQ) values are in the range of 0.03-1.16 ppm and 0.03-5.81 ppm respectively, with RSDs of 3.27-3.75 %, evidencing the feasibility of our method to determine formaldehyde and its homologs by UV-vis spectrophotometry and auspicious prospects of practical applications.


Assuntos
Acetaldeído , Formaldeído , Acetona , Aldeídos , Formaldeído/química , Espectrofotometria/métodos
9.
Biosens Bioelectron ; 213: 114457, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724554

RESUMO

Both melatonin and ascorbic acid could perform an irreplaceable role in maintaining the ecological balance of the human body and fighting cardiovascular diseases. Herein, a dual-channel photo-assisted electrochemical sensor has been fabricated based on Au post-functionalized CeFeO3 nanospheres to simultaneously monitor melatonin and ascorbic acid for the first time. Briefly, CeFeO3 nanospheres are prepared through a hydrothermal and annealing process, and then the reduced Au nanoclusters are anchored on the surface of spheres to afford the CeFeO3@Au bi-nanospherical sensing probe. Impressively, the pre-fabricated sensor can produce a current signal 11% higher under light than that produced in a dark environment during the electrochemical measurements. Subsequently, the sensor fabricated by our strategy has achieved the simultaneous determination of melatonin and ascorbic acid with the wide detecting ranges of 1 nM-5 µM and 1 nM to 2 µM, and low detection limits of 0.8 nM and 0.4 nM by electrochemical measurements with the presence of the sunlight, and has shown satisfactory recoveries in the real sample measurements, demonstrating that the CeFeO3@Au bi-nanospherical sensing probe will be an auspicious candidate of advanced electrode material in photo-assisted electrochemical sensing applications.


Assuntos
Técnicas Biossensoriais , Melatonina , Nanopartículas Metálicas , Ácido Ascórbico , Técnicas Eletroquímicas , Eletrodos , Ouro , Humanos , Tecnologia
10.
Environ Monit Assess ; 194(6): 453, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610488

RESUMO

At the local and regional climate scale, one of the most studied environmental issues is urban heat island (UHI). UHI is a thermal anomaly caused by temperature differences between urban and rural settings, which adds heat to the atmosphere and makes people feel uncomfortable. This study explores the influence of new land-cover data on UHI simulations using the high-resolution Weather Research and Forecasting (WRF) model coupled with the single-layer urban canopy model (SLUCM) in the city of Harbin. A comparison was performed between the new Tsinghua University (TU) land cover dataset with the default United States Geological Survey (USGS) and Moderate Resolution Imaging Spectroradiometer (MODIS) land cover datasets. The results of this study revealed that the new TU land cover data had better representation and more realistic land cover changes than the default datasets. The diurnal, seasonal, and long-term nighttime UHIs of air and surface temperatures were higher than the daytime UHIs for both downtown Harbin and the satellite towns. We discovered that coal-burning during winter had a significant influence on UHI in Harbin. Moreover, the results from our buffer revealed a rapid increase in the UHIs of satellite towns, thus revealing the need to focus on the effects of UHI in satellite towns in the future. Therefore, the timely updating of land cover datasets in the WRF model and implementing mitigation strategies will help improve the urban climatic comfort.


Assuntos
Monitoramento Ambiental , Temperatura Alta , China , Cidades , Monitoramento Ambiental/métodos , Humanos , Imagens de Satélites
11.
Sci Total Environ ; 832: 155081, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35405231

RESUMO

High-performance liquid chromatography-size exclusion chromatography and excitation-emission matrix (EEM) fluorescence spectroscopy were used to analyze the seasonal variations and potential sources of molecular weight (MW) separated light-absorbing chromophores and fluorophores of water-soluble organic compounds (WSOC) and methanol-soluble organic compounds (MSOC) in PM2.5 in cold areas of northern China. The results showed that the light-absorbing organics in MSOC had larger weight-average MW (Mw) (3.19 kDa) and number-average MW (Mn) (1.13 kDa) compared with WSOC (Mw: 1.41 kDa, Mn: 0.692 kDa). The light-absorption of organics showed a trend of winter>spring>autumn>summer and increased on air pollution days. Three fluorescent components including humic-like, protein-like, and terrestrial humic-like components in WSOC were extracted by parallel factor analysis (PARAFAC). Fluorophores in WSOC were dominated by humic-like and terrestrial humic-like components (67.7%). Three fluorescent components extracted from MSOC were low oxidation humic-like, polycyclic aromatic hydrocarbon (PAH)-like, and protein-like components respectively. It is worth noting that compared with WSOC, MSOC may have a higher human health risk due to the presence of PAH-like components. The combination of PARAFAC and self-organizing map had the potential to identify potential sources of fluorophores. It provided a new perspective for comprehensively exploring the characteristics of fluorophores in aerosols. This study provided a reference for further understanding the chemical composition and optical properties of organic aerosols in the cold regions of northern China.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Corantes Fluorescentes/análise , Humanos , Substâncias Húmicas/análise , Metanol , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Espectrometria de Fluorescência , Água/química
12.
Talanta ; 242: 123279, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149425

RESUMO

It is generally accepted that glucose oxidase (GOx) shows unique specificity in ß-d-glucose catalysis. However, it has been found that GOx can catalyze diverse monosaccharides. Therefore, the sensing accuracy for glucose biosensors using GOx as probes will be largely compromised by the presence of other monosaccharides. Herein, multifunctional bi-nanospheres (Fe3O4@Au NCs), which show both peroxidase-like and catalase-like catalytic activities in different working conditions, are successfully constructed and served as desirable platform with huge surface area for the immobilization of large amount of GOx probes. In acidic environment, hydroxyl radicals could be generated via the cascaded catalysis of ß-d-glucose by Fe3O4@Au-GOx, and then employed to initiate the polymerization of boric acid derivative to prepare molecularly imprinted polymers (MIPs) on the surface of GOx using ß-d-glucose as template. Then, the molecularly imprinted GOx are immobilized on the surface of highly oriented pyrolytic graphite (HOPG) electrode and an electrochemical biosensor (Fe3O4@Au-GOx-HOPG) for glucose sensing is successfully obtained. Interestingly, the as-prepared biosensors could selectively detect glucose in the range of 10.0 µM - 5.0 mM with a LOD = 5.0 µM with the help of MIPs, which is comparable or better than other glucose sensors reported recently.


Assuntos
Técnicas Biossensoriais , Glucose , Catálise , Eletrodos , Enzimas Imobilizadas , Glucose/análise , Glucose Oxidase/química , Impressão Molecular
13.
Sci Total Environ ; 807(Pt 3): 150974, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34656601

RESUMO

Emission of 2-chlorophenols (2-CPs) can cause serious air pollution and health problems. Here, the reaction kinetics and products of key radicals in 2-CPs photo-oxidation are explored in both gaseous and heterogeneous reactions. Quantum chemical calculations show that •OH-addition pathways are more preferable than H-abstraction pathways in gas phase, while that is opposite in heterogeneous phase. At 298 K, the overall rate coefficients of the title reactions in gas and heterogeneous phases are 3.48 × 10-13 and 2.37 × 10-13 cm3 molecule-1 s-1 with half-lives of 55.3 h and 81.2 h, respectively. The strong H-bonds between linear Si3O2(OH)8 and 2-CPs change the energy barriers of initial •OH-addition and H-abstraction reactions, resulting in the competition between heterogeneous reactions and gas phase reactions. The products in heterogeneous reactions are chloroquinone and HONO, which can cause atmospheric acid deposition and eco-toxicity. In gas phase, self-cyclization of alkoxy radical (RO•) leads to formation of •HO2 and highly­oxygenated molecules, which cause formation of secondary organic aerosol. It is emphasized that oxidation of 2-CPs by •OH leads to formation of more toxic products for aquatic organisms. Therefore, more attention should be focused on the products originated from •OH-initiated reactions of (2-)CPs in gaseous and heterogeneous reactions.


Assuntos
Clorofenóis , Radical Hidroxila , Clorofenóis/toxicidade , Meia-Vida , Cinética
14.
Anal Chim Acta ; 1188: 339203, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34794580

RESUMO

The specific detection of resorcin from its isomers is a current research hotspot. Thus in our work, a ternary hierarchical porous nanoprobe has been constructed based on the combination of cuttlefish ink and bimetallic Au@Ag nanoclusters for the specific sensing of resorcin. Briefly, through electrostatic interaction, Au@Ag core-shell nanoclusters are immobilized on the surface of polydopamine extracted from cuttlefish, which is turned into nitrogen-doped porous carbon functionalized by bimetallic Au@Ag by topological transformation subsequently. Afterward, an electrochemical sensor is fabricated based on the nanoprobes for specifically determining resorcin in solution by differential pulse voltammetry, and the linear detection ranges of the sensor are 1-100 µM and 1.2-4 mM while the detection limit reaches 0.06 µM. Meanwhile, the sensing mechanism of resorcin by the pre-fabricated sensor is detailedly studied by density functional theory to obtain a clear electrochemical process. Besides, the selectivity, stability, plus reproducibility of the pre-fabricated sensor have been also tested, and the determinations for resorcin in real environmental water samples have also been performed with good recoveries, revealing the auspicious application potential in the environmental monitoring.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Animais , Materiais Biocompatíveis , Decapodiformes , Limite de Detecção , Porosidade , Reprodutibilidade dos Testes , Resorcinóis
15.
Anal Methods ; 13(35): 3994-4000, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528942

RESUMO

Tryptophan (Trp) is one of the essential amino acids, which plays important roles in biological systems and the normal growth of human beings, and it is of great significance to be able to detect Trp in a rapid, efficient, and sensitive way. Herein, a 3D network metal-organic framework ([Sm2(BTEC)1.5(H2O)8]·6H2O) with excellent thermal and water stability was synthesized by a hydrothermal method. Interestingly, it could discriminate Trp from other natural amino acids in aqueous solution through a significant fluorescence enhancement effect, and showed high detection sensitivity (LOD = 330 nM) and outstanding anti-interference ability. The sensor system was successfully applied to the detection of Trp in practical samples, so it was expected to be a sensitive and efficient Trp sensor. In addition, the sensing mechanism was explained in detail by a series of characterization methods combined with density functional theory (DFT). There were many coordination water molecules in the crystal structure of the complex. Based on the small steric hindrance and molecular structure of water molecules, it provided the possibility for coordination interaction between Trp and Sm3+. On the other hand, the triplet energy level (T1) of Trp matched with the 4G5/2 vibrational energy level of Sm3+, so Trp could be used as the second "antenna molecule" besides 1,2,4,5-benzenetetracarboxylic acid (H4BTEC). Therefore, it effectively broadened the way for Sm-MOF to absorb excitation light.


Assuntos
Estruturas Metalorgânicas , Triptofano , Fluorescência , Humanos , Samário , Água
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120065, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198120

RESUMO

Uric acid (UA), as the final product of purine metabolism, exists in urine and serum, which plays an important role in human metabolism, immunity and other functions. The sensitive, efficient, and rapid detection of UA has far-reaching significance in clinical diagnosis and disease prevention. Herein, a novel coordination polymer constructed by dual-ligand was successfully prepared, which exhibited excellent thermal and water stability. The polymer was interlaced by coordination bonds and hydrogen bonds to form an infinitely extended three-dimensional framework, which showed a rare and novel topological structure. The complex selectively recognized UA through significant fluorescence quenching response in the presence of various interferences. The excellent detection sensitivity (the limited detection of 1.2 µM), outstanding anti-interference ability and remarkable recyclability marked the complex to be a promising sensor material towards UA. In addition, the detection mechanism of UA by the complex was investigated in detail by combining density functional theory (DFT) and a variety of other analytical methods.


Assuntos
Polímeros , Ácido Úrico , Fluorescência , Humanos , Ligantes
17.
Environ Monit Assess ; 193(7): 393, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34101041

RESUMO

The Hindu Kush Himalaya (HKH) is one of the major sources of fresh water on Earth and is currently under serious threat of climate change. This study investigates the future water availability in the Langtang basin, Central Himalayas, Nepal under climate change scenarios using state-of-the-art machine learning (ML) techniques. The daily snow area for the region was derived from MODIS images. The outputs of climate models were used to project the temperature and precipitation until 2100. Three ML models, including Gated recurrent unit (GRU), Long short-term memory (LSTM), and Recurrent neural network (RNN), were developed for snowmelt runoff prediction, and their performance was compared based on statistical indicators. The result suggests that the mean temperature of the basin could rise by 4.98 °C by the end of the century. The annual average precipitation in the basin is likely to increase in the future, especially due to high monsoon rainfall, but winter precipitation could decline. The annual river discharge is projected to upsurge significantly due to increased precipitation and snowmelt, and no shift in hydrograph is expected in the future. Among three ML models, the LSTM model performed better than GRU and RNN models. In summary, this study depicts severe future climate change in the region and quantifies its effect on river discharge. Furthermore, the study demonstrates the suitability of the LSTM model in streamflow prediction in the data-scarce HKH region. The outcomes of this study will be useful for water resource managers and planners in developing strategies to harness the positive impacts and offset the negative effects of climate change in the basin.


Assuntos
Mudança Climática , Movimentos da Água , Monitoramento Ambiental , Nepal , Rios
18.
Biosens Bioelectron ; 188: 113355, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34049253

RESUMO

Glucose oxidase (GOx), traditionally regarded as an oxidoreductase with high ß-D-glucose specificity, has been widely applied as sensing probe for ß-D-glucose detection. However, it is found that the specificity of GOx is not absolute and GOx cannot decern ß-D-glucose among its isomers such as xylose, mannose and galactose. The existence of the other monosaccharides in sensing system could compromise the sensitivity for ß-D-glucose, therefore, it is of great urgency to achieve the highly specific catalytic performance of GOx. Herein, porous metal-organic frameworks (MOF) are prepared as the host matrix for immobilization of both GOx and bovine hemoglobin (BHb), obtained a cascaded catalytic system (MOF@GOx@BHb) with both enhanced GOx activity and peroxidase-like activity owing to the spatially confined effect. Then, using ß-D-glucose as both template molecules and substances, hydroxyl radicals are produced continuously and applied for initiating the polymerization of molecular imprinting polymers (MIPs) on the surface of MOF@GOx@BHb. Impressively, the obtaining molecularly imprinted GOx (noted as MOF@GOx@BHb-MIPs) achieves the highly sensitive and specific detection of ß-D-glucose in the concentration range of 0.5-20 µM with the LOD = 0.4 µM (S/N = 3) by colorimetry. Similarly, MOF@GOx@BHb-MIPs are subsequently obtained using mannose, xylose and galactose as template molecules, respectively, and also show satisfied specific catalytic activity towards corresponding templates, indicating the effectiveness of the proposed strategy to achieve highly specific catalytic performance of GOx.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Animais , Bovinos , Glucose Oxidase , Monossacarídeos , Nanotecnologia
19.
Environ Pollut ; 267: 115441, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32854026

RESUMO

The hourly concentration of six criteria air pollutants in the Harbin-Changchun region were used to investigate the status and spatiotemporal variation of target air pollutants and their relationships with meteorological factors. The annual concentrations of particulate matters during 2013-2017 were two times higher than the Chinese Ambient Air Quality Standards (CAAQS) Grade Ⅱ. The annual O3 concentration increased by two times during 2013-2018 in Harbin. The concentration of PM, SO2, NO2, and CO depicted a similar seasonal trend with an order of winter > autumn > spring > summer. The consistent interannual variation trends of PM2.5/CO, NO2 and SO2 indicated that the formation of secondary inorganic aerosols in the annual scale was dominated by the concentrations of NO2 and SO2. The interannual variations of the individual meteorological factors causing on PM2.5 and O3 during 2013-2018 varied significantly in seasonal scale. The interannual variations were stable in annual scale indicating that the continuous decline of PM2.5 during 2014-2018 can be attributed to the comprehensive and strict prohibition of small coal-fired boilers and straw burning in the study area. Meanwhile, the increase in O3 during 2013-2018 in the study area were mainly attributed to the rapid growth of the emission of its precursor (VOCs and NOx). The influence of meteorology on PM2.5 and ozone were the most stable and strongest in winter than that in the other three seasons.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Cidades , Monitoramento Ambiental , Meteorologia , Material Particulado/análise , Estações do Ano
20.
Environ Pollut ; 245: 764-770, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30502706

RESUMO

A nationwide survey, including 75 sludge samples and 18 wastewater samples taken from different wastewater treatment plants (WWTPs) from 23 cities, was carried out to investigate the occurrence and composition profiles of polycyclic aromatic hydrocarbons (PAHs) in China. In total, the concentrations of ∑16PAHs in sludge ranged from 565 to 280,000 ng/g (mean: 9340 ng/g) which was at a moderate level in the world. The composition profiles of PAHs were characterized by 3- and 4-ring PAHs in textile dyeing sludge and 4- and 5-ring PAHs in domestic sludge. Significant variations in regional distribution of PAHs were observed. Both the principal components analysis and diagnostic ratios revealed that vehicle exhaust, coal and natural gas combustion were the main sources of PAHs in China. The estimated concentrations of PAHs were 3820 ng/L and 1120 ng/L in influents and effluents of the WWTPs, respectively. The high toxic equivalent quantity (TEQ) values of PAHs are ascribed to the high PAH levels. Risk quotient values (RQs) in sludge indicated that there was low potential risk to soil ecosystem after sludge had been applied one year except for indeno [1,2,3-cd]pyrene (IcdP) detected in Huaibei, Anhui province.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , China , Cidades , Carvão Mineral/análise , Pirenos , Medição de Risco , Esgotos/análise , Solo , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA