Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 280: 111828, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360740

RESUMO

This study examines the relationship between energy security, energy equity, and environmental sustainability from the perspective of economic growth and CO2 emissions. For this purpose, this study utilizes the energy trilemma index (ETI) 2018 of the World Energy Council (WEC) to measure, evaluate and assess the energy efficiency of the top ten best-performing countries around the world. This study formulates an interval decision matrix to apply Principal Components Analysis (PCA) by reducing a large set into a small set of underlying variables with comprehensive information. Finally, this study uses the Fuzzy-TOPSIS method to determine the comprehensive ranks of all countries. This study shows that Denmark holds overall first rank in energy efficiency with a score of one in energy security, eleven in energy equity, and seventeen in environmental sustainability. In contrast, Germany has dominated all top ten performers by energy and environmental progress, which cannot be shirker within the UK's social progress concept. Thus, with ceteris paribus, a higher energy price will indicate a higher degree of scarcity of energy sources, encouraging working for cheaper and renewable alternatives and ultimately influencing the energy supply side. Carbon valuation can reduce greenhouse emissions by paying the extra dollar to the enterprise for less emission. It will lead to changing energy consumption structures and make it a cleaner choice for profit maximization.


Assuntos
Desenvolvimento Econômico , Energia Renovável , Dióxido de Carbono/análise , Fontes Geradoras de Energia , Alemanha
2.
ACS Appl Mater Interfaces ; 11(28): 25186-25194, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31268648

RESUMO

Tuning the electronic band structure of black titania to improve photocatalytic performance through conventional band engineering methods has been challenging because of the defect-induced charge carrier and trapping sites. In this study, KSCN-modified hydrogenated nickel nanocluster-modified black TiO2 (SCN-H-Ni-TiO2) exhibits enhanced photocatalytic CO2 reduction due to the interfacial dipole effect. Upon combining the experimental and theoretical simulation approach, the presence of an electrostatic interfacial dipole associated with chemisorption of SCN has dramatic effects on the photocatalyst band structure in SCN-H-Ni-TiO2. An interfacial dipole possesses a more negative zeta potential shift of the isoelectric point from 5.20 to 3.20, which will accelerate the charge carrier separation and electron transfer process. Thiocyanate ion passivation on black TiO2 demonstrated an increased work function around 0.60 eV, which was induced by the interracial dipole effect. Overall, the SCN-H-Ni-TiO2 photocatalyst showed an enhanced CO2 reduction to solar fuel yield by 2.80 times higher than H-Ni-TiO2 and retained around 88% product formation yield after 40 h.

3.
Nat Commun ; 9(1): 169, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330430

RESUMO

Photocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an L-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS2 (SnS2-C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS2 lattice, resulting in different photophysical properties as compared with undoped SnS2. This SnS2-C photocatalyst significantly enhances the CO2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS2-C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO2 reduction under visible light, where the in situ carbon-doped SnS2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.

4.
Small ; 14(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29134759

RESUMO

One of the key challenges in artificial photosynthesis is to design a photocatalyst that can bind and activate the CO2 molecule with the smallest possible activation energy and produce selective hydrocarbon products. In this contribution, a combined experimental and computational study on Ni-nanocluster loaded black TiO2 (Ni/TiO2[Vo] ) with built-in dual active sites for selective photocatalytic CO2 conversion is reported. The findings reveal that the synergistic effects of deliberately induced Ni nanoclusters and oxygen vacancies provide (1) energetically stable CO2 binding sites with the lowest activation energy (0.08 eV), (2) highly reactive sites, (3) a fast electron transfer pathway, and (4) enhanced light harvesting by lowering the bandgap. The Ni/TiO2[Vo] photocatalyst has demonstrated highly selective and enhanced photocatalytic activity of more than 18 times higher solar fuel production than the commercial TiO2 (P-25). An insight into the mechanisms of interfacial charge transfer and product formation is explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA