Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(47): 54766-54772, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37963334

RESUMO

Millimeter-wave and short-range wireless communication is an important part of the Internet of Things due to its advantages of high transmission speed and large data capacity. In this paper, two antenna arrays operating at typical millimeter-wave bands (45 and 60 GHz) based on graphene-assembled films (GAF) are proposed for short-range wireless communication application. The 45 GHz graphene-assembled film antenna array is in the form of a magnetoelectric dipole antenna with a strip slot coupling to achieve bidirectional radiation, which offers an operating bandwidth of 40-49.5 GHz with a realized gain of 11.8 dBi. The 60 GHz graphene-assembled film antenna utilizes a microstrip discontinuous radiation array to achieve radiation with an operating bandwidth of 59-64 GHz, reaching the peak realized gain of 14.92 dBi over the working frequency. Finally, we proposed an experimental validation to verify the transmission performance of both antenna arrays in an actual conference room. The results show that the signal drops slowly in the room with drop rates of 0.064 dB/cm (at 45 GHz) and 0.071 dB/cm (at 60 GHz), while it steeply dropped through the wall with the drop rates of 2.3 and 3.13 dB/cm, more than 35-fold difference in signal drop rates in the room and through the wall. It has been confirmed that the proposed antenna arrays can successfully realize fast indoor short-range wireless communication while also preventing signal leakage through walls, thereby enhancing the security of information. In summary, this is the first time that we have applied graphene-based materials to millimeter-wave and short-range wireless communications, revealing the significant potential of carbon-based materials in high-frequency communication systems.

2.
Materials (Basel) ; 16(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176249

RESUMO

In this paper, a radio frequency identification (RFID) tag is designed and fabricated based on highly electrical and thermal conductive graphene films. The tag operates in the ultrahigh-frequency (UHF) band, which is suitable for high-power microwave environments of at least 800 W. We designed the protection structure to avoid charge accumulation at the antenna's critical positions. In the initial state, the read range of the anti-high-power microwave graphene film tag (AMGFT) is 10.43 m at 915 MHz. During the microwave heating experiment, the aluminum tag causes a visible electric spark phenomenon, which ablates the aluminum tag and its attachment, resulting in tag failure and serious safety issues. In contrast, the AMGFT is intact, with its entire read range curve growing and returning to its initial position as its temperature steadily decreases back to room temperature. In addition, the proposed dual-frequency tag further confirms the anti-high-power microwave performance of graphene film tags and provides a multi-scenario interactive application.

3.
Adv Mater ; 34(50): e2206101, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269002

RESUMO

Assembling pristine graphene into freestanding films featuring high electrical conductivity, superior flexibility, and robust mechanical strength aims at meeting the all-around high criteria of new-generation electronics. However, voids and defects produced in the macroscopic assembly process of graphene nanosheets severely degrade the performance of graphene films, and mechanical brittleness often limits their applications in wide scenarios. To address such challenges, an electrostatic-repulsion aligning strategy is demonstrated to produce highly conductive, ultraflexible, and multifunctional graphene films. Typically, the high electronegativity of titania nanosheets (TiNS) induces the aligning of negatively charged graphene nanosheets via electrostatic repulsion in the film assembly. The resultant graphene films show fine microstructure, enhanced mechanical properties, and improved electrical conductivity up to 1.285 × 105 S m-1 . Moreover, the graphene films can withstand 5000 repeated folding without structural damage and electrical resistance fluctuation. These comprehensive improved properties, combined with the facile synthesis method and scalable production, make these graphene films a promising platform for electromagnetic interference (EMI) shielding and thermal-management applications in smart and wearable electronics.

4.
ACS Nano ; 16(3): 3934-3942, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35225592

RESUMO

A macroscopic-assembled graphene oxide (GO) membrane with sustainable high strength presents a bright future for its applications in ionic and molecular filtration for water purification or fast force response for sensors. Traditionally, the bottom-up macroscopic assembly of GO sheets is optimized by widening the interlaminar space for expediting water passage, frequently leading to a compromise in strength, assembly time, and ensemble thickness. Herein, we rationalize this strategy by implanting a superhydrophilic bridge of cobalt-based metal-organic framework nanosheets (NMOF-Co) as an additional water "aisle" into the interlaminar space of GO sheets (GO/NMOF-Co), resulting in a high-strength macroscopic membrane ensemble with tunable thickness from the nanometer scale to the centimeter scale. The GO/NMOF-Co membrane assembly time is only 18 s, 30800 times faster than that of pure GO (154 h). More importantly, the obtained membrane attains a strength of 124.4 MPa, which is more than 3 times higher than that of the GO membrane prepared through filtration. The effect of hydrophilicity on membrane assembly is also investigated by introducing different intercalants, suggesting that, except for the interlamellar spacing, the interlayered hydrophilicity plays a more decisive role in the macroscopic assembly of GO membranes. Our results give a fundamental implication for fast macroscopic assembly of high-strength 2D materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA