Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Mol Neurobiol ; 43(6): 2989-3003, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37106272

RESUMO

Elabela (ELA), which is the second endogenous peptide ligand of the apelin receptor (APJ) to be discovered, has been widely studied for potential use as a therapeutic peptide. However, its role in ischemic stroke (IS), which is a leading cause of disability and death worldwide and has limited therapeutic options, is uncertain. The aim of the present study was to investigate the beneficial effects of ELA on neuron survival after ischemia and the underlying molecular mechanisms. Primary cortical neurons were isolated from the cerebral cortex of pregnant C57BL/6J mice. Flow cytometry and immunofluorescence showed that ELA inhibited oxygen-glucose deprivation (OGD) -induced apoptosis and axonal damage in vitro. Additionally, analysis of the Gene Expression Omnibus database revealed that the expression of microRNA-124-3p (miR-124-3p) was decreased in blood samples from patients with IS, while the expression of C-terminal domain small phosphatase 1 (CTDSP1) was increased. These results indicated that miR-124-3p and CTDSP1 were related to ischemic stroke, and there might be a negative regulatory relationship between them. Then, we found that ELA significantly elevated miR-124-3p expression, suppressed CTDSP1 expression, and increased p-AKT expression by binding to the APJ receptor under OGD in vitro. A dual-luciferase reporter assay confirmed that CTDSP1 was a direct target of miR-124-3p. Furthermore, adenovirus-mediated overexpression of CTDSP1 exacerbated neuronal apoptosis and axonal damage and suppressed AKT phosphorylation, while treatment with ELA or miR-124-3p mimics reversed these effects. In conclusion, these results indicated that ELA could alleviate neuronal apoptosis and axonal damage by upregulating miR-124-3p and activating the CTDSP1/AKT signaling pathway. This study, for the first time, verified the protective effect of ELA against neuronal injury after ischemia and revealed the underlying mechanisms. We demonstrated the potential for the use of ELA as a therapeutic agent in the treatment of ischemic stroke.


Assuntos
AVC Isquêmico , MicroRNAs , Fármacos Neuroprotetores , Camundongos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Monoéster Fosfórico Hidrolases/farmacologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Peptídeos/farmacologia , Apoptose , Glucose/metabolismo
2.
Langmuir ; 38(19): 6209-6216, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35508432

RESUMO

Probing the adlayer structures on an electrode/electrolyte interface is one of the most important tasks in modern electrochemistry for clarifying the electrochemical processes. Herein, we have combined cyclic voltammetry and electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy techniques to explore the potential-dependent adlayer structures on Au(111) in a room-temperature ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) without or with pyridine (Py). It is clearly found that the BMI+ cations strongly adsorb on the negatively charged surface with a flat-lying orientation, leaving a little space for Py adsorption. Upon increasing the potentials of the electrode, the variations of Raman band intensities and frequencies reveal that the interaction between the BMI+ cations and the Au surface becomes weak; meanwhile, the Py adsorption becomes strong, and its geometry turns from flat, tilted to vertical. Finally, BMI+ cations desorb and leave plenty of surface sites for Py adsorption in bulk solution, and a N-bonded compact Py adlayer is formed on the very positively charged surface. This causes obvious anodic peaks in cyclic voltammograms, and the peak currents increase with the square root of the scanning rate. The present work provides a fair molecular-level understanding of electrochemical interfaces and molecular adsorption of Py in ionic liquids.

3.
Analyst ; 147(7): 1341-1347, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35244130

RESUMO

The electroreductive cleavage of carbon-halogen bonds has attracted increasing attention in both electrosynthesis and pollution remediation. Herein, by employing the in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique, we have successfully investigated the electroreductive dehalogenation process of aryl halides with the thiol group on a smooth Au electrode in aqueous solution at different pH values. The obtained potential-dependent Raman spectra directly reveal a mixture of the reduction products 4,4'-biphenyldithiol (BPDT) and thiophenol (TP). The conversion ratios of the C-Cl and C-Br bonds at pH = 7 are 37% and 55%, respectively. Furthermore, quantitative analysis of the intensity variations of ν(C-Cl), ν(C-Br) and aromatic ν(CC) stretching modes suggests electroreductive dehalogenation via both direct electron transfer reduction and electrocatalytic hydrodehalogenation. Molecular evidence for the C-C cross coupling process through TP reaction with benzene free radical intermediates is found at negative potentials, which leads to the increasing selectivity of biphenyl products.

4.
Anal Chem ; 94(3): 1823-1830, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35020360

RESUMO

Room-temperature ionic liquids (RTILs) emerged as ideal solvents, and bipyridine as one of the most used ligands have been widely employed in surface science, catalysis, and molecular electronics. Herein, in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and STM break junction (STM-BJ) technique has been employed to probe the electrochemical process of bipyridine at Au(111)/IL interfaces. It is interestingly found that these molecules undertake a redox process with a pair of well-defined reversible peaks in cyclic voltammograms (CVs). The spectroscopic evidence shows a radical cation generated with rising new Raman peaks related to parallel CC stretching of a positively charged pyridyl ring. Furthermore, these electrochemically charged bipyridine is also confirmed by electrochemical STM-BJ at the single-molecule level, which displays a binary conductance switch ratio of about 400% at the redox potentials. This present work offers a molecular-level insight into the pyridine-mediated reaction process and electron transport in RTILs.

5.
Curr Pharm Biotechnol ; 23(6): 861-872, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34376132

RESUMO

BACKGROUND: Low-molecular citrus pectin (LCP) is a pectin polysaccharide with low molec-ular weight, low degree of crux, and no branching. It is obtained by degrading natural citrus pectin (CP) through physical, chemical and enzymatic methods. LCP has received considerable attention in recent years due to its potential applications in the medical and biological fields. METHODS: In our previous study, LCP was prepared from CP by using recombinant Bacillus subtilis pectate lyase B. Monosaccharide comparative analysis revealed that the galacturonic acid content of LCP was higher than that of CP. The cell viability effect of LCP was elucidated by using HepG2 cells and the Cell Counting Kit-8 (CCK-8) assay. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, Annexin V-FITC/PI staining, and flow cytometer propidium iodide stain-ing were performed to detect the effects of LCP on apoptosis and cell cycle arrest in HepG2 cells. Mi-tochondrial membrane potential (MMP) was observed through 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine assay. RESULTS & DISCUSSION: The Mw of the prepared LCP was 7.6 kDa, which was significantly lower than that of CP (140 kDa). Cell viability decreased with the increase in the concentration of LCP. The half-inhibitory concentration of 1.46 ± 0.02 mg/mL was determined. Treatment with 1.6 mg/mL LCP in-duced the apoptosis of HepG2 cells with the inhibition rate of 83.10% ± 4.72%, and the cell cycle was arrested in the S phase. Furthermore, the MMP of HepG2 cells decreased with the increase in LCP concentration. CONCLUSION: The enzymatically prepared LCP could inhibit the proliferation of HepG2 cells. This study provided a partial experimental basis and reference for LCP to become a potential functional food for anti-liver cancer.


Assuntos
Neoplasias Hepáticas , Apoptose , Proliferação de Células , Sobrevivência Celular , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Pectinas/farmacologia
6.
J Cell Mol Med ; 26(3): 593-600, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470050

RESUMO

The recovery of blood supply after a period of myocardial ischaemia does not restore the heart function and instead results in a serious dysfunction called myocardial ischaemia-reperfusion injury (IRI), which involves several complex pathophysiological processes. Mitochondria have a wide range of functions in maintaining the cellular energy supply, cell signalling and programmed cell death. When mitochondrial function is insufficient or disordered, it may have adverse effects on myocardial ischaemia-reperfusion and therefore mitochondrial dysfunction caused by oxidative stress a core molecular mechanism of IRI. Peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) is an important antioxidant molecule found in mitochondria. However, its role in IRI has not yet been systematically summarized. In this review, we speculate the role of PGC-1α as a key regulator of mitonuclear communication, which may interacts with nuclear factor, erythroid 2 like -1 and -2 (NRF-1/2) to inhibit mitochondrial oxidative stress, promote the clearance of damaged mitochondria, enhance mitochondrial biogenesis, and reduce the burden of IRI.


Assuntos
Traumatismo por Reperfusão Miocárdica , Humanos , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Biogênese de Organelas , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais
7.
Nanotechnology ; 33(9)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34798622

RESUMO

Quantum interference (QI) in single molecular junctions shows a promising perspective for realizing conceptual nanoelectronics. However, controlling and modulating the QI remains a big challenge. Herein, two-type substituents at different positions ofmeta-linked benzene, namely electron-donating methoxy (-OMe) and electron-withdrawing nitryl (-NO2), are designed and synthesized to investigate the substituent effects on QI. The calculated transmission coefficientsT(E) indicates that -OMe and -NO2could remove the antiresonance and destructive quantum interference (DQI)-induced transmission dips at position 2. -OMe could raise the antiresonance energy at position 4 while -NO2groups removes the DQI features. For substituents at position 5, both of them are nonactive for tuning QI. The conductance measurements by scanning tunneling microscopy break junction show a good agreement with the theoretical prediction. More than two order of magnitude single-molecule conductance on/off ratio could be achieved at the different positions of -NO2substituent groups at room temperature. The present work proves chemical substituents can be used for tuning QI features in single molecular junctions, which provides a feasible way toward realization of high-performance molecular devices.

8.
Mol Carcinog ; 59(11): 1280-1291, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32965071

RESUMO

Sirtuin 2 (SIRT2) is one of seven mammalian homologs of silent information regulator 2 (Sir2) and an NAD+ -dependent deacetylase; however, its critical role in lymphangiogenesis remains to be explored. We investigate SIRT2 mediated regulation of vascular endothelial growth factor D (VEGFD) expression and lymphangiogenesis by deacetylating endothelial PAS domain protein 1 (EPAS1) in head and neck cancer (HNC) in vitro and in vivo. In this study, we report that SIRT2, rather than other members of the Sir2 family, reduces the expression of VEGFD and lymphangiogenesis in hypoxia-induced HNC cells and transplanted HNC mice models by reducing EPAS1 acetylation at Lys674 and decreasing the transcriptional activity of EPAS1 target genes. The expression of SIRT2 was closely related to the expression of VEGFD, lymphangiogenesis in subcutaneously transplanted mice models, and lymphangiogenesis in patients with HNC. Our results suggest that SIRT2 plays a central role in tumor lymphangiogenesis via deacetylating EPAS1 protein. Reagents targeting the NAD+ -dependent deacetylase activity of SIRT2 would be beneficial for inhibiting tumor lymphangiogenesis and treating other hypoxia-related diseases.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Linfangiogênese , Sirtuína 2/metabolismo , Fator D de Crescimento do Endotélio Vascular/metabolismo , Acetilação , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Metástase Linfática , Camundongos , Camundongos Nus , Invasividade Neoplásica , Sirtuína 2/genética , Células Tumorais Cultivadas , Fator D de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA