RESUMO
OBJECTIVES: The evidence suggests that L-carnitine may reduce mortality in critically ill patients with sepsis. However, the conclusions of different studies are inconsistent. A meta-analysis was conducted to evaluate the effect of L-carnitine compliance on mortality in patients with sepsis. METHODS: A search of the PubMed, Embase, and Cochrane Library databases was conducted on 1 June 2024. The risk ratio (RR) was pooled with a 95% confidence interval (CI) for dichotomous data. The publications were subjected to a review in accordance with the guidelines set forth in the Cochrane Handbook and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). This study has been registered with INPLASY (number INPLASY202460086). RESULTS: A total of 356 patients were included in four randomized controlled trials. The results indicated that L-carnitine supplementation was not associated with 28-day mortality in sepsis patients (RR: 0.65; 95% CI 0.33-1.28; I2 = 70%; P = 0.21). And there was no significant effect on 12-month mortality (RR: 0.72; 95% CI 0.47-1.11; I2 = 0%; P = 0.14) compared to placebo. CONCLUSIONS: The use of L-carnitine was not found to be significantly correlated with 28-day or 12-month mortality in patients with sepsis.
Assuntos
Carnitina , Estado Terminal , Suplementos Nutricionais , Sepse , Humanos , Carnitina/administração & dosagem , Estado Terminal/mortalidade , Estado Terminal/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Sepse/dietoterapia , Sepse/mortalidadeRESUMO
On a global scale, gastric adenocarcinoma (GCa) accounts for a large burden of death from cancer. Despite advances in systemic therapy and surgical technique, the fatality rate for GCa remains unacceptably high in Europe and North America, where diagnosis is typically made at an advanced stage. Biomarkers that can accurately predict response to new therapies and provide novel therapeutic strategies are urgently sought. FAM46C, a putative noncanonical nucleotidyltransferase, has garnered interest for its tumor suppressor function in multiple myeloma. A frequent and profound depletion of FAM46C has been described in GCa patients from China, Japan and now Canada. Furthermore, the degree of FAM46C depletion meaningfully portends cancer recurrence following resection, and death from GCa. In this review, we provide an updated summary of the literature regarding FAM46C as a biomarker in GCa and explore the potential mechanism(s) through which FAM46C depletion promotes GCa progression, including dis-inhibition of oncogenic Plk4 kinase activity. We highlight the potential for restoration of FAM46C levels as a therapeutic strategy. Norcantharidin, a synthetic analogue of the traditional Chinese medicine cantharidin derived from the blister beetle, is the only bio-available compound presently known to upregulate FAM46C expression and is under investigation in phase one trials in cancer patients.
RESUMO
Food safety is closely related to human health and has become a worldwide, pressing concern. Food safety analysis is essential for ensuring food safety. Sulfur quantum dots (SQDs), a new type of zero-dimensional metal-free nanomaterials, have recently become the focus of scientific research due to their good luminescence properties, dispersibility, biocompatibility, and inherent antibacterial properties. This review focuses on recent advances in SQDs, with emphasis on their practical applications in the food field. First, commonly used methods for the synthesis of SQDs are presented, including traditional and emerging strategies. The properties of SQDs are then analyzed in detail, particularly their luminescence properties, catalytic activities, and reducing properties. Next, the use of SQDs in food safety detection and antibacterial fields are elaborated. Finally, this review discusses the challenges associated with the use of SQDs in food safety detection and antimicrobial applications.
RESUMO
The canonical theory of immunology stating that "Immunoglobulin (Ig) is produced by B lymphocytes and exerts antibody activity" has been established since the 1970s. However, the discovery of non B cell-derived Igs (non B-Igs), which can exert multiple biological activities in addition to their antibody activities, necessitates a reevaluation of the classic concept of Ig. This has been documented with a number of characteristics related to their structure, modification, genetic regulation as well as the functions associated with clinical conditions, particularly multiple cancers. The discovery of non B-Ig provides us with a new perspective to better understand not only basic immunology, but also various Ig-related clinical manifestations including autoimmune diseases, chronic inflammation, and anaphylaxis. Notably, non B-Ig can directly promote the occurrence of malignant tumours.
Assuntos
Imunoglobulinas , Humanos , Imunoglobulinas/imunologia , Imunoglobulinas/genética , Animais , Linfócitos B/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Doenças Autoimunes/imunologia , Inflamação/imunologiaRESUMO
Covalent organic frameworks (COFs) hold great promise for rechargeable batteries. However, the synthesis of COFs with abundant active sites, excellent stability, and increased conductivity remains a challenge. Here, chemically stable fully sp2 carbon-conjugated COFs (sp2c-COFs) with multiple active sites are designed by the polymerization of benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-tricarbaldehyde) (BTT) and s-indacene-1,3,5,7(2H,6H)-tetrone (ICTO) (denoted as BTT-ICTO). The morphology and structure of the COF are precisely regulated from "butterfly-shaped" to "cable-like" through an in situ controllable growth strategy, significantly promoting the exposure and utilization of active sites. When the unique "cable-like" BTT-ICTO@CNT is employed as lithium-ion batteries (LIBs) cathode, it exhibits exceptional capacity (396â mAh g-1 at 0.1â A g-1 with 97.9 % active sites utilization rate), superb rate capacity (227â mAh g-1 at 5.0â A g-1), and excellent cycling performance (184â mAh g-1 over 8000â cycles at 2.0â A g-1 with 0.00365 % decay rate per cycle). The lithium storage mechanism of BTT-ICTO is exhaustively revealed by in situ Fourier transform infrared, in situ Raman, and density functional theory calculations. This work provides in-depth insights into fully sp2c-COFs with multiple active sites for high-performance LIBs.
RESUMO
Post-extraction wound infections are a common complication of dental extractions. More specifically, infection in the alveolar socket after tooth extraction accelerates the resorption and destruction of the alveolar bone, and ultimately affects the final restoration results. Currently, the main clinical treatment approaches applied to the socket after tooth extraction include mechanical wound debridement, chemical rinses (e.g., chlorhexidine), filling of the extraction socket with absorbent gelatin sponges, and the systemic application of antibiotics. However, these traditional treatment modalities have some limitations and their therapeutic effects are unsatisfactory. In this study, a phototherapeutic temperature-sensitive hydrogel material was constructed for injection using a tea polyphenol (TP)-modified poly-N-isopropylacrylamide (PNIPAM) hydrogel skeleton loaded with the photosensitiser indocyanine green (ICG). The resulting PNIPAM-TP/ICG system exhibited an excellent injectability and temperature-sensitive properties. In addition, it stopped haemorrhaging and acted as a wound astringent. The hydrogel steadily released ICG into the oral environment to exert photothermal/photodynamic effects along with synergistic antibacterial and anti-inflammatory properties when combined with tea polyphenols. In vivo experiments demonstrated that the application of PNIPAM-TP/ICG to infected dental extraction wounds in rats rapidly stopped the bleeding and accelerated wound healing. Overall, this study describes a drug-loaded, temperature-sensitive hydrogel for the treatment of open wound infections, and shows promise as a reference for the treatment of tooth extraction wounds.
RESUMO
Musa ornata and Musa velutina are members of the Musaceae family and are indigenous to the South and Southeast Asia. They are very popular in the horticultural market, but the lack of genomic sequencing data and genetic studies has hampered efforts to improve their ornamental value. In this study, we generated the first chromosome-level genome assemblies for both species by utilizing Oxford Nanopore long reads and Hi-C reads. The genomes of M. ornata and M. velutina were assembled into 11 pseudochromosomes with genome sizes of 427.85 Mb and 478.10 Mb, respectively. Repetitive sequences comprised 46.70% and 50.91% of the total genomes for M. ornata and M. velutina, respectively. Differentially expressed gene (DEG) and Gene Ontology (GO) enrichment analyses indicated that upregulated genes in the mature pericarps of M. velutina were mainly associated with the saccharide metabolic processes, particularly at the cell wall and extracellular region. Furthermore, we identified polygalacturonase (PG) genes that exhibited higher expression level in mature pericarps of M. velutina compared to other tissues, potentially being accountable for pericarp dehiscence. This study also identified genes associated with anthocyanin biosynthesis pathway. Taken together, the chromosomal-level genome assemblies of M. ornata and M. velutina provide valuable insights into the mechanism of pericarp dehiscence and anthocyanin biosynthesis in banana, which will significantly contribute to future genetic and molecular breeding efforts.
RESUMO
HYPOTHESIS: Metal-organic frameworks (MOFs) are highly suitable precursors for supercapacitor electrode materials owing to their high porosity and stable backbone structures that offer several advantages for redox reactions and rapid ion transport. EXPERIMENTS: In this study, a carbon-coated Ni9S8 composite (Ni9S8@C-5) was prepared via sulfuration at 500 â using a spherical Ni-MOF as the sacrificial template. FINDING: The stable carbon skeleton derived from Ni-MOF and positive structure-activity relationship due to the multinuclear Ni9S8 components resulted in a specific capacity of 278.06 mAh·g-1 at 1 A·g-1. Additionally, the hybrid supercapacitor (HSC) constructed using Ni9S8@C-5 as the positive electrode and the laboratory-prepared coal pitch-based activated carbon (CTP-AC) as the negative electrode achieved an energy density of 69.32 Wh·kg-1 at a power density of 800.06 W·kg-1, and capacity retention of 83.06 % after 5000 cycles of charging and discharging at 5 A·g-1. The Ni-MOF sacrificial template method proposed in this study effectively addresses the challenges associated with structural collapse and agglomeration of Ni9S8 during electrochemical reactions, thus improving its electrochemical performance. Hence, a simple preparation method is demonstrated, with broad application prospects in supercapacitor electrodes.
RESUMO
BACKGROUND: Acer is a taxonomically intractable and speciose genus that contains over 150 species. It is challenging to distinguish Acer species only by morphological method due to their abundant variations. Plastome and nuclear ribosomal DNA (nrDNA) sequences are recommended as powerful next-generation DNA barcodes for species discrimination. However, their efficacies were still poorly studied. The current study will evaluate the application of plastome and nrDNA in species identification and perform phylogenetic analyses for Acer. RESULT: Based on a collection of 83 individuals representing 55 species (c. 55% of Chinese species) from 13 sections, our barcoding analyses demonstrated that plastomes exhibited the highest (90.47%) species discriminatory power among all plastid DNA markers, such as the standard plastid barcodes matK + rbcL + trnH-psbA (61.90%) and ycf1 (76.19%). And the nrDNA (80.95%) revealed higher species resolution than ITS (71.43%). Acer plastomes show abundant interspecific variations, however, species identification failure may be due to the incomplete lineage sorting (ILS) and chloroplast capture resulting from hybridization. We found that the usage of nrDNA contributed to identifying those species that were unidentified by plastomes, implying its capability to some extent to mitigate the impact of hybridization and ILS on species discrimination. However, combining plastome and nrDNA is not recommended given the cytonuclear conflict caused by potential hybridization. Our phylogenetic analysis covering 19 sections (95% sections of Acer) and 128 species (over 80% species of this genus) revealed pervasive inter- and intra-section cytonuclear discordances, hinting that hybridization has played an important role in the evolution of Acer. CONCLUSION: Plastomes and nrDNA can significantly improve the species resolution in Acer. Our phylogenetic analysis uncovered the scope and depth of cytonuclear conflict in Acer, providing important insights into its evolution.
Assuntos
Acer , Código de Barras de DNA Taxonômico , DNA de Plantas , DNA Ribossômico , Filogenia , Acer/genética , Código de Barras de DNA Taxonômico/métodos , DNA Ribossômico/genética , DNA de Plantas/genética , Plastídeos/genética , Especificidade da Espécie , Núcleo Celular/genéticaRESUMO
Single atom catalysts (SACs) are highly favored in Li-S batteries due to their excellent performance in promoting the conversion of lithium polysulfides (LiPSs) and inhibiting their shuttling. However, the intricate and interrelated microstructures pose a challenge in deciphering the correlation between the chemical environment surrounding the active site and its catalytic activity. Here, a novel SAC featuring a distinctive Mn-N3-Cl moiety anchored on B, N co-doped carbon nanotubes (MnN3Cl@BNC) is synthesized. Subsequently, the selective removal of the Cl ligands while inheriting other microstructures is performed to elucidate the effect of Cl coordination on catalytic activity. The Cl coordination effectively enhances the electron cloud density of the Mn-N3-Cl moiety, reducing the band gap and increasing the adsorption capacity and redox kinetics of LiPSs. As a modified separator for Li-S batteries, MnN3Cl@BNC exhibits high capacities of 1384.1 and 743 mAh g-1 at 0.1 and 3C, with a decay rate of only 0.06% per cycle over 700 cycles at 1 C, which is much better than that of MnN3OH@BNC. This study reveals that Cl coordination positively contributes to improving the catalytic activity of the Mn-N3-Cl moiety, providing a fresh perspective for the design of high-performance SACs.
RESUMO
BACKGROUND: College athletes are a group often affected by anxiety. Few interventional studies have been conducted to address the anxiety issues in this population. OBJECTIVE: We conducted a mobile-delivered mindfulness intervention among college athletes to study its feasibility and efficacy in lowering their anxiety level and improving their mindfulness (measured by the Five Facet Mindfulness Questionnaire [FFMQ]). METHODS: In April 2019, we recruited 290 college athletes from a public university in Shanghai, China, and 288 of them were randomized into an intervention group and a control group (closed trial), with the former (n=150) receiving a therapist-guided, smartphone-delivered mindfulness-based intervention and the latter receiving mental health promotion messages (n=138). We offered in-person instructions during the orientation session for the intervention group in a classroom, with the therapist interacting with the participants on the smartphone platform later during the intervention. We used generalized linear modeling and the intent-to-treat approach to compare the 2 groups' outcomes in dispositional anxiety, precompetition anxiety, and anxiety during competition, plus the 5 dimensions of mindfulness (measured by the FFMQ). RESULTS: Our intent-to-treat analysis and generalized linear modeling found no significant difference in dispositional anxiety, precompetition anxiety, or anxiety during competition. Only the "observation" facet of mindfulness measures had a notable difference between the changes experienced by the 2 groups, whereby the intervention group had a net gain of .214 yet fell short of reaching statistical significance (P=.09). Participants who specialized in group sports had a higher level of anxiety (ß=.19; SE=.08), a lower level of "nonjudgemental inner experience" in FFMQ (ß=-.07; SE=.03), and a lower level of "nonreactivity" (ß=-.138; SE=.052) than those specializing in individual sports. CONCLUSIONS: No significant reduction in anxiety was detected in this study. Based on the participant feedback, the time availability for mindfulness practice and session attendance for these student athletes in an elite college could have compromised the intervention's effectiveness. Future interventions among this population could explore a more student-friendly time schedule (eg, avoid final exam time) or attempt to improve cognitive and scholastic outcomes. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR1900024449; https://www.chictr.org.cn/showproj.html?proj=40865.
Assuntos
Atenção Plena , Humanos , Atenção Plena/métodos , China , Estudantes/psicologia , Ansiedade/terapia , Ansiedade/psicologia , AtletasRESUMO
Non-small cell lung cancers (NSCLC) account for 85 % of total lung cancers. Mutation in EGFRdrives the progress of NSCLSs with high mortality rate. Besides the common mutations in EGFR, which together comprise of 85 % of all EGFR mutations and respond to the targeted therapy of EGFR tyrosine kinase inhibitors (TKIs), many other low-frequency mutations of EGFR are existed in patients. The oncogenic roles and sensitivity of these mutations to EGFR TKIs are not fully understood yet. Here we described two cases of lung adenocarcinoma patients harboring EGFR R776L missense mutation, showed PD and SD after treatment with third-generation EGFR inhibitor, Almonertinib. Chemotherapy afterward showed PR effect in one patient with PSF of 10 months. We also explored the oncogenic feature of single R776L mutation by Ba/F3 isogenic cells and found that, EGFR R776L mutation activates EGFR-related survival signaling pathway in Ba/F3 cells, and they are insensitive to gefitinib, afatinib, and Almonertinib, which consistent with our clinical observation.
Assuntos
Acrilamidas , Neoplasias Pulmonares , Pirimidinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Indóis , Mutação , Receptores ErbB/genéticaRESUMO
The nitrite efficient utilization microorganism Wickerhamomyces anomalus RZWP01 was identified. Using nitrite and ammonium as the sole nitrogen source, the nitrogen removal rate of W. anomalus RZWP01 was 97.4% and 87.1%, respectively. W. anomalus RZWP01 grew well in the nitrite medium with glucose or xylose as the only carbon source. However, the W. anomalus RZWP01 cannot live on the nitrite medium with lactose, citric acid, and methanol as the only carbon source. The maximal cell concentration occurred in the nitrite medium with glucose as the only carbon source at a C/N ratio of 20 for 48 h, reaching 8.92 × 108 cell mL-1. W. anomalus RZWP01 was the first reported yeast that can efficiently utilize nitrite. The isolation and identification of W. anomalus RZWP01 enriched the microbial resources of nitrite-degrading microorganisms and provided functional microorganisms for the water treatment of sustainable aquaculture.
RESUMO
BACKGROUNDS AND AIMS: Magnetic resonance cholangiopancreatography (MRCP) plays a significant role in diagnosing common bile duct stones (CBDS). Currently, there are no studies to detect CBDS by using the deep learning (DL) model in MRCP. This study aimed to use the DL model You Only Look Once version 5 (YOLOv5) to diagnose CBDS in MRCP images and verify its validity compared to the accuracy of radiologists. METHODS: By collecting the thick-slab MRCP images of patients diagnosed with CBDS, 4 submodels of YOLOv5 were used to train and validate the performance. Precision, recall rate, and mean average precision (mAP) were used to evaluate model performance. Analyze possible reasons that may affect detection accuracy by validating MRCP images in 63 CBDS patients and comparing them with radiologist detection accuracy. Calculate the correctness of YOLOv5 for detecting one CBDS and multiple CBDS separately. RESULTS: The precision of YOLOv5l (0.970) was higher than that of YOLOv5x (0.909), YOLOv5m (0.874), and YOLOv5s (0.939). The mAP did not differ significantly between the 4 submodels, with the following results: YOLOv5l (0.942), YOLOv5x (0.947), YOLO5s (0.927), and YOLOv5m (0.946). However, in terms of training time, YOLOv5s was the fastest (4.8 h), detecting CBDS in only 7.2 milliseconds per image. In 63 patients the YOLOv5l model detected CBDS with an accuracy of 90.5% compared to 92.1% for radiologists, analyzing the difference between the positive group successfully identified and the unidentified negative group not. The incorporated variables include common bile duct diameter > 1 cm (p = .560), combined gallbladder stones (p = .706), maximum stone diameter (p = .057), combined cholangitis (p = .846), and combined pancreatitis (p = .656), and the number of CBDS (p = .415). When only one CBDS was present, the accuracy rate reached 94%. When multiple CBDSs were present, the recognition rate dropped to 70%. CONCLUSION: YOLOv5l is the model with the best results and is almost as accurate as the radiologist's detection of CBDS and is also capable of detecting the number of CBDS. Although the accuracy of the test gradually decreases as the number of stones increases, it can still be useful for the clinician's initial diagnosis.
Assuntos
Aprendizado Profundo , Cálculos Biliares , Humanos , Colangiopancreatografia por Ressonância Magnética , Colangiopancreatografia Retrógrada Endoscópica/métodos , Cálculos Biliares/diagnóstico por imagem , Ducto Colédoco , Estudos RetrospectivosRESUMO
The application of bimetal supported graphite phase carbon nitride in activated peroxymonosulfate (PMS) process has become a research hotspot in recent years. In this study, 8-g C3N4/Mo/Ni composite catalyst material was successfully prepared by doping Mo and Ni in graphite phase carbon nitride. The bimetallic active sites were formed in the catalyst, and PMS was activated by the metal valence Mo6+/Mo4+ and Ni2+/Ni(0) through redox double cycle to effectively degrade phenol. When pH was neutral, the degradation rate of 20 mg/L phenol solution with 8-g C3N4/Mo/Ni (0.35 g/L) and PMS (0.6 mM) could reach 95% within 20 min. The degradation rate of 8-g C3N4/Mo/Ni/PMS catalytic system could reach more than 90% within 20min under the condition of pH range of 3-11 and different anions. Meanwhile, the degradation effects of RhB, MB and OFX on different pollutants within 30min were 99%, 100% and 82%, respectively. Electron spin resonance and quenching experiments showed that in 8-g C3N4/Mo/Ni/PMS system, the degradation mechanism was mainly non-free radicals, and the main active species in the degradation process was 1O2. This study provides a new idea for the study of bimetal supported graphite phase carbon nitride activation of PMS and the theoretical study of degradation mechanism.
Assuntos
Grafite , Nitrilas , Compostos de Nitrogênio , Peróxidos , Grafite/química , Fenol , FenóisRESUMO
Importance: Implemented in 18 regions, Comprehensive Primary Care Plus (CPC+) was the largest US primary care delivery model ever tested. Understanding its association with health outcomes is critical in designing future transformation models. Objective: To test whether CPC+ was associated with lower health care spending and utilization and improved quality of care. Design, Setting, and Participants: Difference-in-differences regression models compared changes in outcomes between the year before CPC+ and 5 intervention years for Medicare fee-for-service beneficiaries attributed to CPC+ and comparison practices. Participants included 1373 track 1 (1â¯549â¯585 beneficiaries) and 1515 track 2 (5â¯347â¯499 beneficiaries) primary care practices that applied to start CPC+ in 2017 and met minimum care delivery and other eligibility requirements. Comparison groups included 5243 track 1 (5â¯347â¯499 beneficiaries) and 3783 track 2 (4â¯507â¯499 beneficiaries) practices, matched, and weighted to have similar beneficiary-, practice-, and market-level characteristics as CPC+ practices. Interventions: Two-track design involving enhanced (higher for track 2) and alternative payments (track 2 only), care delivery requirements (greater for track 2), data feedback, learning, and health information technology support. Main Outcomes and Measures: The prespecified primary outcome was annualized Medicare Part A and B expenditures per beneficiary per month (PBPM). Secondary outcomes included expenditure categories, utilization (eg, hospitalizations), and claims-based quality-of-care process and outcome measures (eg, recommended tests for patients with diabetes and unplanned readmissions). Results: Among the CPC+ patients, 5% were Black, 3% were Hispanic, 87% were White, and 5% were of other races (including Asian/Other Pacific Islander and American Indian); 85% of CPC+ patients were older than 65 years and 58% were female. CPC+ was associated with no discernible changes in the total expenditures (track 1: $1.1 PBPM [90% CI, -$4.3 to $6.6], P = .74; track 2: $1.3 [90% CI, -$5 to $7.7], P = .73), and with increases in expenditures including enhanced payments (track 1: $13 [90% CI, $7 to $18], P < .001; track 2: $24 [90% CI, $18 to $31], P < .001). Among secondary outcomes, CPC+ was associated with decreases in emergency department visits starting in year 1, and in acute hospitalizations and acute inpatient expenditures in later years. Associations were more favorable for practices also participating in the Medicare Shared Savings Program and independent practices. CPC+ was not associated with meaningful changes in claims-based quality-of-care measures. Conclusions and Relevance: Although the timing of the associations of CPC+ with reduced utilization and acute inpatient expenditures was consistent with the theory of change and early focus on episodic care management of CPC+, CPC+ was not associated with a reduction in total expenditures over 5 years. Positive interaction between CPC+ and the Shared Savings Program suggests transformation models might be more successful when provider cost-reduction incentives are aligned across specialties. Further adaptations and testing of primary care transformation models, as well as consideration of the larger context in which they operate, are needed.
Assuntos
Gastos em Saúde , Medicare , Idoso , Humanos , Feminino , Estados Unidos , Masculino , Atenção à Saúde , Assistência Integral à Saúde , Planos de Pagamento por Serviço Prestado , Atenção Primária à Saúde/organização & administraçãoRESUMO
BACKGROUND: Accumulated evidence suggests that M2-like polarized macrophages plays an important role in reducing inflammation, promoting and accelerating wound healing process and tissue repair. Thus, M2-like TAMs (Tumour-associated macrophages) was an appealing target for therapy intervention. METHOD: Flow cytometry and RT-PCR assay were used to detect the polarization of macrophages induced by Medrysone, and the rat corneal mechanical injury model was established to evaluate the efficacy of Medrysone in cornel repair. RESULTS: Here we found that Medrysone enhanced IL-4 induced M2 polarization of macrophages, as illustrated by increased expression of CD206, up-regulation of M2 marker mRNAs. Medrysone promoted VEGF and CCL2 secretion in IL-4 induced M2-like polarization. IL-4 triggered STAT6 activation was further enhanced by Medrysone and silencing of STAT6 partially abrogated the stimulatory effect of Medrysone. Medrysone improved migration-promoting feature of M2-like macrophages, as indicated by increased migration of endothelial cells. Further, Medrysone promoted corneal injury repair by inducing M2 polarization of macrophages in vivo. CONCLUSION: Our study suggest that Medrysone promotes corneal injury repair by inducing the M2 polarization of macrophages, providing a theoretical basis for the application of Medrysone in the treatment of corneal injury.
Assuntos
Lesões da Córnea , Células Endoteliais , Ratos , Animais , Interleucina-4/farmacologia , Interleucina-4/metabolismo , Macrófagos/metabolismoRESUMO
Iron(III) oxide (Fe2O3) exhibits a substantial theoretical specific capacitance and a broad operational voltage window, making it a prospective anode material. The crystal structure of Fe2O3 was altered through cobalt doping, and its electronic conductivity was improved by supporting it with carbon cloth (Co-Fe2O3@CC). Subsequently, a crosslinked network of polypyrrole (PPy) was synthesized onto Co-Fe2O3@CC via an ice-water bath, resulting in the formation of PPy/Co-Fe2O3@CC. This PPy nano-crosslinked network not only established three-dimensional electron transport pathways on the Fe2O3 surface but also amplified the composite material's specific surface area to 45.229 m2 g-1, thereby promoting its electrochemical performance. At a current density of 2 mA cm-2, PPy/Co-Fe2O3@CC displayed an area specific capacitance of 704 mF cm-2, a value 2.2 times higher than that of Co-Fe2O3@CC. The assembled PPy/Co-Fe2O3@CC//Ni-MnO2@CC asymmetric supercapacitor demonstrated an energy density of 1.41 mW h cm-3 at a power density of 54 mW cm-3, making the synthesized electrode material a promising candidate for flexible supercapacitors.
RESUMO
Following a suicide attempt, components of aftercare can include efforts to reduce suicidal behavior (i.e., suicide, attempt, or ideation) of a person who has attempted suicide and facilitate the psychosocial adjustment of the patient and their family members. The purpose of this systematic review and meta-analysis of key outcomes was to synthesize the existing evidence on interventions for people who have attempted suicide and their family members. The authors found that aftercare interventions show a statistically significant reduction in further suicide attempts for intervention participants. Studies also reported a reduction in suicide deaths, depression, and hopelessness, but the results are based on limited quality of evidence. The uptake of interventions and treatment retention varied widely by aftercare intervention. The authors could not explore the effects of the intervention target (e.g., participants who attempted suicide versus family members or both) or populations because of the homogeneity of the sample and the lack of studies measuring family member responses. The identified studies did not meaningfully address the effects of interventions on family members because these were rarely included in existing research studies.
RESUMO
The circadian clock orchestrates a wide variety of physiological and behavioral processes, enabling animals to adapt to daily environmental changes, particularly the day-night cycle. However, the circadian clock's role in the developmental processes remains unclear. Here, we employ the in vivo long-term time-lapse imaging of retinotectal synapses in the optic tectum of larval zebrafish and reveal that synaptogenesis, a fundamental developmental process for neural circuit formation, exhibits circadian rhythm. This rhythmicity arises primarily from the synapse formation rather than elimination and requires the hypocretinergic neural system. Disruption of this synaptogenic rhythm, by impairing either the circadian clock or the hypocretinergic system, affects the arrangement of the retinotectal synapses on axon arbors and the refinement of the postsynaptic tectal neuron's receptive field. Thus, our findings demonstrate that the developmental synaptogenesis is under hypocretin-dependent circadian regulation, suggesting an important role of the circadian clock in neural development.