Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Sci Total Environ ; 930: 172508, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642752

RESUMO

Water-soluble organic aerosol (WSOA) plays a crucial role in altering radiative forcing and impacting human health. However, our understanding of the seasonal variations of WSOA in Chinese megacities after the three-year clean air action plan is limited. In this study, we analyzed PM2.5 filter samples collected over one year (2020-2021) in Beijing to characterize the seasonal changes in the chemical and optical properties of WSOA using an offline aerosol mass spectrometer along with spectroscopy techniques. The mean mass concentration of WSOA during the observation period was 8.84 ± 7.12 µg m-3, constituting approximately 64-67 % of OA. Our results indicate the contribution of secondary OA (SOA) increased by 13-28 % due to a substantial reduction in primary emissions after the clean air action plan. The composition of WSOA exhibited pronounced seasonal variations, with a predominant contribution from less oxidized SOA in summer (61 %) and primary OA originating from coal combustion and biomass burning during the heating season (34 %). The mass absorption efficiency of WSOA at 365 nm in winter was nearly twice that in summer, suggesting that WSOA from primary emissions possesses a stronger light-absorbing capability than SOA. On average, water-soluble brown carbon accounted for 33-48 % of total brown carbon absorption. Fluorescence analysis revealed humic-like substances as the most significant fluorescence component of WSOA, constituting 82 %. Furthermore, both absorption and fluorescence chromophores were associated with nitrogen-containing compounds, highlighting the role of nitrogen-containing species in influencing the optical properties of WSOA. The results are important for chemical transport models to accurately simulate the WSOA and its climate effects.

2.
Environ Sci Technol ; 58(18): 7947-7957, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38676647

RESUMO

Volatility of organic aerosols (OAs) significantly influences new particle formation and the occurrence of particulate air pollution. However, the relationship between the volatility of OA and the level of particulate air pollution (i.e., particulate matter concentration) is not well understood. In this study, we compared the chemical composition (identified by an ultrahigh-resolution Orbitrap mass spectrometer) and volatility (estimated based on a predeveloped parametrization method) of OAs in urban PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 µm) samples from seven German and Chinese cities, where the PM2.5 concentration ranged from a light (14 µg m-3) to heavy (319 µg m-3) pollution level. A large fraction (71-98%) of compounds in PM2.5 samples were attributable to intermediate-volatility organic compounds (IVOCs) and semivolatile organic compounds (SVOCs). The fraction of low-volatility organic compounds (LVOCs) and extremely low-volatility organic compounds (ELVOCs) decreased from clean (28%) to heavily polluted urban regions (2%), while that of IVOCs increased from 34 to 62%. We found that the average peak area-weighted volatility of organic compounds in different cities showed a logarithmic correlation with the average PM2.5 concentration, indicating that the volatility of urban OAs increases with the increase of air pollution level. Our results provide new insights into the relationship between OA volatility and PM pollution levels and deepen the understanding of urban air pollutant evolution.


Assuntos
Aerossóis , Poluentes Atmosféricos , Poluição do Ar , Espectrometria de Massas , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Volatilização , Compostos Orgânicos/análise , China , Compostos Orgânicos Voláteis/análise
3.
Sci Total Environ ; 926: 171989, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547971

RESUMO

To understand the characteristics of atmospheric pollution above the urban canopy in warm seasons, the characteristics of sub-micron aerosol (PM1) was studied based on high-altitude observations at the Beijing 325 m meteorological tower. The PM1 at 260 m was 34, 29 and 21 µg m-3 in May 2015, June 2015, and June 2017, respectively, indicating a reduction in PM1 pollution above the urban canopy. Meanwhile, an overall decrease was also observed in the concentrations of all PM1 chemical species (excluding Chl and BC) and organic aerosol (OA) factors. Previous instances of heavy haze in Beijing often coincided with high humidity and stagnant weather conditions. However, the heightened pollution episodes in June 2017 were accompanied by high wind speeds and low relative humidity. Compared to May 2015, the contribution of secondary components to PM1 in June 2017 was more prominent, with the total proportion of SNA (sulfate, nitrate, and ammonium) and more-oxidized oxygenated OA (MO-OOA) to PM1 increased by approximately 10 %. Secondary species of NH4NO3, (NH4)2SO4, and MO-OOA, as well as black carbon, collectively contributed the vast majority of aerosol extinction coefficient (bext), with the four species contributing a total of ≥96 % to bext at 260 m. Hydrocarbon-like OA, cooking OA, and less-oxidized oxygenated OA have undergone significant reductions, so continued emphasis on controlling local sources to reduce these three aerosol species and addressing regional sources to further mitigate overall aerosol species is imperative. In lower pollution situation, the diurnal variation of PM was smoother, and its pollution sources were more regionally uniform, which might be attributed to the reduced diversity and complexity in the physical and chemical processes in air pollution.

4.
Sci Total Environ ; 920: 170792, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336060

RESUMO

Organic nitrogen emissions from light-duty gasoline vehicles (LDGVs) is believed to play a pivotal role in atmospheric particulate matter (PM) in urban environments. Here, the characterization of organic nitrogen emitted by LDGVs with varying engine displacements at different speed phases was analyzed using a Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at molecular level. For the LDGV with small engine displacements, the nitrogen-containing organic (CHON) compounds exhibit higher abundance, molecular weight, oxygen content and aromaticity in the extra-high-speed phase. Conversely, for the LDGV with big engine displacements, more CHON compounds with elevated abundance, molecular weight, oxygen content and aromaticity were observed in the low-speed phase. Our study assumed that the formation of CHON compounds emitted from LDGVs is mainly the oxidation reaction during fuel combustion, so the potential precursor-product pairs related to oxidation process were used to study the degree of combustion reaction. The results show that the highest proportion of oxidation occurs during extra-high-speed phase for LDGV with small engine displacements, and during low-speed phase for LDGV with big engine displacements. These results offer a novel perspective for comprehending the mechanism behind vehicle emissions formation and contribute valuable insights for crafting effective air pollution regulations.

5.
Sci Bull (Beijing) ; 69(7): 978-987, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242834

RESUMO

Aerosol ammonium (NH4+), mainly produced from the reactions of ammonia (NH3) with acids in the atmosphere, has significant impacts on air pollution, radiative forcing, and human health. Understanding the source and formation mechanism of NH4+ can provide scientific insights into air quality improvements. However, the sources of NH3 in urban areas are not well understood, and few studies focus on NH3/NH4+ at different heights within the atmospheric boundary layer, which hinders a comprehensive understanding of aerosol NH4+. In this study, we perform both field observation and modeling studies (the Community Multiscale Air Quality, CMAQ) to investigate regional NH3 emission sources and vertically resolved NH4+ formation mechanisms during the winter in Beijing. Both stable nitrogen isotope analyses and CMAQ model suggest that combustion-related NH3 emissions, including fossil fuel sources, NH3 slip, and biomass burning, are important sources of aerosol NH4+ with more than 60% contribution occurring on heavily polluted days. In contrast, volatilization-related NH3 sources (livestock breeding, N-fertilizer application, and human waste) are dominant on clean days. Combustion-related NH3 is mostly local from Beijing, and biomass burning is likely an important NH3 source (∼15%-20%) that was previously overlooked. More effective control strategies such as the two-product (e.g., reducing both SO2 and NH3) control policy should be considered to improve air quality.

6.
Nat Nanotechnol ; 19(4): 524-533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38172432

RESUMO

Exposure to widely used inert fibrous nanomaterials (for example, glass fibres or carbon nanotubes) may result in asbestos-like lung pathologies, becoming an important environmental and health concern. However, the origin of the pathogenesis of such fibres has not yet been clearly established. Here we report an electrochemical nanosensor that is used to monitor and quantitatively characterize the flux and dynamics of reactive species release during the frustrated phagocytosis of glass nanofibres by single macrophages. We show the existence of an intense prolonged release of reactive oxygen and nitrogen species by single macrophages near their phagocytic cups. This continued massive leakage of reactive oxygen and nitrogen species damages peripheral cells and eventually translates into chronic inflammation and lung injury, as seen during in vitro co-culture and in vivo experiments.


Assuntos
Nanofibras , Nanotubos de Carbono , Oxigênio , Nanotubos de Carbono/química , Fagocitose , Macrófagos , Espécies Reativas de Oxigênio
7.
Water Res ; 249: 120881, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016225

RESUMO

Pharmaceuticals and personal care products (PPCPs) are emerging contaminants that have raised urgent environmental issues. The dissolved organic matter (DOM) plays a pivotal role on PPCPs' migration and transformation. To obtain a comprehensive understanding of the occurrence and distribution of PPCPs, a seasonal sampling focused on the riverine system in coastal zone, Tianjin, Bohai Rim was conducted. The distribution and transformation of thirty-three PPCPs and their interaction with DOM were investigated, and their sources and ecological risks were further evaluated. The total concentration of PPCPs ranges from 0.01 to 197.20 µg/L, and such value is affected by regional temperature, DOM and land use types. PPCPs migration at soil-water interface is controlled by temperature, sunlight, water flow and DOM. PPCPs have a high affinity to the protein-like DOM, while the humus-like DOM plays a negative influence and facilitates PPCPs' degradation. It is also found that protein-like DOM can represent point source pollution, while humus-like substances indicate non-point source (NPS) emission. Specific PPCPs can be used as markers to trace the source of domestic discharge. Additionally, daily use PPCPs such as ketoprofen, caffeine and iopromide are estimated to be the main risk substances, and their ecological risk varies on space, season and river hydraulic condition.


Assuntos
Cosméticos , Poluentes Químicos da Água , Estações do Ano , Matéria Orgânica Dissolvida , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Cosméticos/análise , China , Água , Solo , Rios , Preparações Farmacêuticas
8.
Environ Sci Technol ; 58(3): 1589-1600, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38154035

RESUMO

Hydroxymethanesulfonate (HMS) has been found to be an abundant organosulfur aerosol compound in the Beijing-Tianjin-Hebei (BTH) region with a measured maximum daily mean concentration of up to 10 µg per cubic meter in winter. However, the production medium of HMS in aerosols is controversial, and it is unknown whether chemical transport models are able to capture the variations of HMS during individual haze events. In this work, we modify the parametrization of HMS chemistry in the nested-grid GEOS-Chem chemical transport model, whose simulations provide a good account of the field measurements during winter haze episodes. We find the contribution of the aqueous aerosol pathway to total HMS is about 36% in winter in Beijing, due primarily to the enhancement effect of the ionic strength on the rate constants of the reaction between dissolved formaldehyde and sulfite. Our simulations suggest that the HMS-to-inorganic sulfate ratio will increase from the baseline of 7% to 13% in the near future, given the ambitious clean air and climate mitigation policies for the BTH region. The more rapid reductions in emissions of SO2 and NOx compared to NH3 alter the atmospheric acidity, which is a critical factor leading to the rising importance of HMS in particulate sulfur species.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Pequim , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , Monitoramento Ambiental , China , Aerossóis/análise , Água
9.
Anal Chem ; 96(1): 522-530, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38127714

RESUMO

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in the absorption mode has a superior performance over the conventional magnitude mode. However, this improved performance for the analysis of dissolved organic matter (DOM) in negative-ion and positive-ion modes of electrospray ionization [ESI(-) and ESI(+), respectively] remains unknown. This study systemically compared the improved performance by the absorption mode for DOM FT-ICR MS spectra acquired with the low-field and high-field magnet instruments between two charge modes. The absorption mode enhanced the resolution and signal-to-noise ratio values of DOM peaks with factors of 1.88-1.94 and 1.60-1.72, respectively. The significantly higher improvement of mass resolution for the ESI(+) mode than that for the ESI(-) mode could resolve the extensive occurrence of mass doublets in the ESI(+) mode, yielding some formulas exclusively identified in the ESI(+) mode. The findings of this study have systemically demonstrated the superiority of the absorption mode in improving the spectra quality during the routine FT-ICR MS postdata analysis and highlighted its great potential in characterizing the molecular composition of DOM using the FT-ICR MS technique in both ESI(-) and ESI(+) modes.

10.
Environ Sci Technol ; 57(48): 20043-20052, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37992316

RESUMO

Levoglucosan (LG) is a pyrolysis product of cellulose and hemicellulose at low combustion temperatures. However, LG release cannot be determined only by considering the contents of cellulose and hemicellulose exclusively due to the complexity of combustion processes and the physical-chemical properties of the fuel. This study detected the emission factors (EFs) of LG from 22 different solid fuel samples (including coal and biomass) by considering 18 different fuel properties and five combustion parameters. The average LGEFs during solid fuel burning varied in a range of 0.03-136 mg kg-1, with a magnitude difference of 1-4 orders. While the variations in cellulose (59.5-368 mg g-1) and hemicellulose (73.5-165 mg g-1) contents of fuel samples were only one- to 6-fold. A short combustion duration (<150 min) and a medium combustion temperature (200-400 °C) influenced by volatile and ash contents are crucial for the generation and accumulation of LG. A random forest coupled with the Akaike information criterion stepwise regression model successfully explained 96% of the total LG emission variation using three variables (ash content, cellulose content, and modified combustion efficiency). The ash content promoted coke formation and LG chain cracking by increasing the pyrolysis temperature and is considered the most important factor. The alkali metal in ash can reduce the energy barrier of intramolecular ring contraction reactions and inhibit the dehydration reactions, which led to additional heat being utilized by the competitive pathways of LG formation. This study provided a method to address the parametrization and release mechanisms of combustion source emissions.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Carvão Mineral/análise , Glucose , Temperatura , Celulose , Poluentes Atmosféricos/análise
11.
Water Res ; 244: 120382, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37660467

RESUMO

Excessive phosphorus (P) loadings cause major pollution concerns in large catchments. Quantifying the point and nonpoint P sources of large catchments is essential for catchment P management. Although phosphate oxygen isotopes (δ18O(PO4)) can reveal P sources and P cycling in catchments, quantifying multiple P sources in a whole catchment should be a research focus. Therefore, this study aimed to quantitatively identify the proportions of multiple potential end members in a typical large catchment (the Yangtze River Catchment) by combining the phosphate oxygen isotopes, land use type, mixed end-element model, and a Bayesian model. The δ18O(PO4) values of river water varied spatially from 4.9‰ to18.3‰ in the wet season and 6.0‰ to 20.9‰ in the dry season. Minor seasonal differences but obvious spatial changes in δ18O(PO4) values could illustrate how human activity changed the functioning of the system. The results of isotopic mass balance and the Bayesian model confirmed that controlling agricultural P from fertilizers was the key to achieving P emission reduction goals by reducing P inputs. Additionally, the effective rural domestic sewage treatment, development of composting technology, and resource utilization of phosphogypsum waste could also contribute to catchment P control. P sources in catchment ecosystems can be assessed by coupling an isotope approach and multiple-models.


Assuntos
Ecossistema , Fosfatos , Humanos , Isótopos de Oxigênio , Teorema de Bayes , Agricultura
12.
Water Res ; 241: 120133, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262945

RESUMO

The sequestration of organic carbon (OC) in wetland sediments is influenced by the presence of oxygen or lack thereof. The mechanisms of OC sequestration under redox fluctuations, particularly by the co-mediation of reactive iron (Fe) protection and thermodynamic limitation by the energetics of the OC itself, remain unclear. Over the past 26 years, a combination of field surveys and remote sensing images had revealed a strong decline in both natural and constructed wetland areas in Tianjin. This decline could be attributed to anthropogenic landfill practices and agricultural reclamation efforts, which may have significant impacts on the oxidation-reduction conditions for sedimentary OC. The Fe-bound OC (CBD extraction) decreased by 2 to 10-fold (from 8.3 to 10% to 0.7-4.5%) with increasing sediment depth at three sites with varying water depths (WD). The high-resolution spectro-microscopy analysis demonstrated that Fe (oxyhydr)oxides were colocalized with sedimentary OC. Corresponding to lower redox potential, the nominal oxidation state of C (NOSC), which corresponds to the energy content in OC, became more negative (energy content increased) with increasing sediment depth. Taken together, the preservation of sedimentary OC is contingent on the prevailing redox conditions: In environments where oxygen availability is high, reactive Fe provides protection for OC, while in anoxic environments, thermodynamic constraints (i.e., energetic constraints) limit the oxidation of OC.


Assuntos
Carbono , Áreas Alagadas , Carbono/análise , Compostos Férricos , Oxirredução , Oxigênio , Sedimentos Geológicos
13.
J Environ Sci (China) ; 132: 31-42, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37336608

RESUMO

Black carbon (BC) aerosols in the atmosphere play a significant role in climate systems due to their strong ability to absorb solar radiation. The lifetime of BC depends on atmospheric transport, aging and consequently on wet scavenging processes (in-cloud and below-cloud scavenging). In this study, sequential rainwater samples in eight rainfall events collected in 2 mm interval were measured by a tandem system including a single particle soot photometer (SP2) and a nebulizer. The results showed that the volume-weighted average (VWA) mass concentrations of refractory black carbon (rBC) in each rainfall event varied, ranging from 10.8 to 78.9 µg/L. The highest rBC concentrations in the rainwater samples typically occurred in the first fraction from individual rainfall events. The geometric mean median mass-equivalent diameter (MMD) decreased under precipitation, indicating that rBC with larger sizes was relatively aged and preferentially removed by wet scavenging. A positive correlation (R2 = 0.73) between the VWA mass concentrations of rBC in rainwater and that in ambient air suggested the important contribution of scavenging process. Additionally, the contributions of in-cloud and below-cloud scavenging were distinguished and accounted for 74% and 26% to wet scavenging, respectively. The scavenging ratio of rBC particles was estimated to be 0.06 on average. This study provides helpful information for better understanding the mechanism of rBC wet scavenging and reducing the uncertainty of numerical simulations of the climate effects of rBC.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Pequim , Fuligem/análise , Aerossóis/análise , Carbono , Monitoramento Ambiental/métodos
14.
Sci Total Environ ; 895: 165099, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379928

RESUMO

Forest soils cover about 30 % of the Earth's land surface and play a fundamental role in the global cycle of organic matter. Dissolved organic matter (DOM), the largest active pool of terrestrial carbon, is essential for soil development, microbial metabolism and nutrient cycling. However, forest soil DOM is a highly complex mixture of tens of thousands of individual compounds, which is largely composed of organic matter from primary producers, residues from microbial process and the corresponding chemical reactions. Therefore, we need a detailed picture of molecular composition in forest soil, especially the pattern of large-scale spatial distribution, which can help us understand the role of DOM in the carbon cycle. To explore the spatial and molecular variations of DOM in forest soil, we choose six major forest reserves located in different latitudes ranging in China, which were investigated by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). Results show that aromatic-like molecules are preferentially enriched in DOM at high latitude forest soils, while aliphatic/peptide-like, carbohydrate-like, and unsaturated hydrocarbon molecules are preferentially enriched in DOM at low latitude forest soils, besides, lignin-like compounds account for the highest proportion in all forest soil DOM. High latitude forest soils have higher aromatic equivalents and aromatic indices than low latitude forest soils, which suggest that organic matter at higher latitude forest soils preferentially contain plant-derived ingredients and are refractory to degradation while microbially derived carbon is dominant in organic matter at low latitudes. Besides, we found that CHO and CHON compounds make up the majority in all forest soil samples. Finally, we visualized the complexity and diversity of soil organic matter molecules through network analysis. Our study provides a molecular-level understanding of forest soil organic matter at large scales, which may contribute to the conservation and utilization of forest resources.

15.
Adv Atmos Sci ; : 1-23, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37359906

RESUMO

Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the "air pollution complex" was first proposed by Professor Xiaoyan TANG in 1997. For papers published in 2021 on air pollution (only papers included in the Web of Science Core Collection database were considered), more than 24 000 papers were authored or co-authored by scientists working in China. In this paper, we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years, including studies on (1) sources and emission inventories, (2) atmospheric chemical processes, (3) interactions of air pollution with meteorology, weather and climate, (4) interactions between the biosphere and atmosphere, and (5) data assimilation. The intention was not to provide a complete review of all progress made in the last few years, but rather to serve as a starting point for learning more about atmospheric chemistry research in China. The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established, provided robust scientific support to highly successful air pollution control policies in China, and created great opportunities in education, training, and career development for many graduate students and young scientists. This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances, whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China, to hopefully be addressed over the next few decades.

16.
Sci Total Environ ; 882: 163629, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086994

RESUMO

Global warming and glacier retreat have significant impacts on the structure and function of natural ecosystems. However, little is known about how glacier retreat affects the long-term evolution of ecosystems at high-altitude regions. In this study, we explored the possible effects of glacier retreat on catchment vegetation and lake productivity in Lake Puma Yumco, southeastern Tibetan Plateau, based on detailed organic molecular compositions determined by an ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and combined with various sedimentary geochemical indicators. The glaciers in the catchment keep retreating since 1870 CE, as inferred from the multiple indices of total organic carbon content (TOC), total nitrogen content (TN), C/N ratios, and carbonate contents. Accompanying modern global warming and glacier shrinkage, the relative abundance of soil- and vegetation-derived large molecular compounds (e.g., vascular plant-derived polyphenols, highly unsaturated and phenolic compounds, and condensed aromatics) increased gradually in lake sediments, suggesting that ice-covered land was exposed under warming condition, and gradually revegetation occurred. Both increases in relative abundance of nitrogen-containing compounds (e.g., CHNO) and chlorophyll derivative contents in the lake sediments were observed since 1870 CE, suggesting that stronger catchment weathering and increasing terrestrial nutrient loads enhanced the downstream lake productivity after glacier retreat. Our results imply that continued global warming and alpine glacier retreat in the future may further promote vegetation expansion and increases in lake productivity on the Tibetan Plateau.

17.
Environ Pollut ; 327: 121569, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37028792

RESUMO

To understand the source, formation, and seasonality of biogenic secondary organic aerosol (BSOA), a nine-stage cascade impactor was utilized to collect size-segregated particulate samples from April 2017 to January 2018 in Beijing, China. BSOA tracers derived from isoprene, monoterpene, and sesquiterpene were measured with gas chromatography-mass spectrometry. Isoprene and monoterpene SOA tracers exhibited significant seasonal variations, with a summer maximum and a winter minimum. Dominance of 2-methyltetrols (isoprene SOA tracers) with a good correlation with levoglucosan (a biomass burning tracer), which was combined with the detection of methyltartaric acids (possible indicators for aged isoprene) in summer, implies possible biomass burning and long-range transport. In contrast, sesquiterpene SOA tracer (ß-caryophyllinic acid) was dominant in winter and was probably associated with the local burning of biomass. Bimodal size distributions were observed for most isoprene SOA tracers, consistent with previous laboratory experiments and field studies showing that they can be formed not only in the aerosol phase but also in the gas phase. Monoterpene SOA tracers cis-pinonic acid and pinic acid showed a coarse-mode peak (5.8-9.0 µm) in four seasons due to their volatile nature. Sesquiterpene SOA tracer ß-caryophyllinic acid showed a unimodal pattern with a major fine-mode peak (1.1-2.1 µm), which is linked to local biomass burning. The tracer-yield method was used to quantify the contributions of isoprene, monoterpene, and sesquiterpene to secondary organic carbon (SOC) and SOA. The highest isoprene SOC and SOA concentrations occurred in summer (2.00 µgC m-3 and 4.93 µg m-3, respectively), contributing to 1.61% of OC and 5.22% of PM2.5, respectively. These results suggest that BSOA tracers are promising tracers for understanding the source, formation, and seasonality of BSOA.


Assuntos
Poluentes Atmosféricos , Sesquiterpenos , Poluentes Atmosféricos/análise , Pequim , Monoterpenos/análise , Sesquiterpenos/análise , Aerossóis/análise , Estações do Ano , Material Particulado/análise , Monitoramento Ambiental/métodos
18.
Sci Total Environ ; 884: 163797, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121327

RESUMO

Aerosols affect the radiative forcing of the global climate and cloud properties. Organic aerosols are among the most important, yet least understood, components of the sensitive Tibetan Plateau atmosphere. Here, the concentration of and the seasonal and diurnal variations in biomass burning and biogenic aerosols, and their contribution to organic aerosols in the inland Tibetan Plateau were investigated using molecular tracers. Biomass burning tracers including levoglucosan and its isomers, and aromatic acids showed higher concentrations during winter than in summer. Molecular tracers of primary and secondary biogenic organic aerosols were more abundant during summer than those in winter. Meteorological conditions were the main factors influencing diurnal variations in most organic molecular tracers during both seasons. According to the tracer-based method, we found that biogenic secondary organic aerosols (38.5 %) and fungal spores (14.4 %) were the two dominant contributors to organic aerosols during summer, whereas biomass burning (15.4 %) was an important aerosol source during winter at remote continental background site. Results from the positive matrix factor source apportionment also demonstrate the importance of biomass burning and biogenic aerosols in the inland Tibetan Plateau. During winter, the long-range transport of biomass burning from South Asia contributes to organic aerosols. In contrast, the precursors, biogenic secondary organic aerosols, and fungal spores from local emissions/long-range transport are the major sources of organic aerosols during summer. Further investigation is required to distinguish between local emissions and the long-range transport of organic aerosols. In-depth insights into the organic aerosols in the Tibetan Plateau are expected to reduce the uncertainties when evaluating aerosol effects on the climate system in the Tibetan Plateau.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Tibet , Ácidos , Estações do Ano , Aerossóis/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Biomassa
19.
Environ Res ; 227: 115753, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965811

RESUMO

Lake eutrophication seriously threatens water quality and human health. Under continuous global warming and intensified human activity, increasing attention is being paid to how lake trophic status responds to climate change and anthropogenic impacts. Based on the sedimentary organic matter (SOM) molecular composition determined by the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) technology, and combined with the SOM stable nitrogen isotopes (δ15Norg), we studied how lake trophic status and ecology respond to both climatic changes and anthropogenic impacts of the past 500 yrs at Lake Daihai, Inner Mongolia. The results show that the relative abundance of lipids, proteins, and carbohydrates in lake sediments kept relatively low before AD ∼1850, and increased gradually thereafter, especially after AD ∼1950, suggesting that the lake trophic status was low before AD ∼1850, but obviously increased during the past one more century. On the other hand, the relative abundance of allochthonous condensed aromatics and vascular plant-derived polyphenols compounds gradually decreased after AD ∼1850, which is most likely due to the intensified land-use changes in the catchment. Our results show that the SOM molecular composition is more sensitive to trace the land-use changes than the δ15Norg ratios, suggesting a potential use of this technique to trace even earlier human land uses (e.g., during the prehistorical times) in a catchment. The results of this study suggest that intensified land-use change, increased discharges of human sewage and industrial wastewater, cropland runoff, and concentrated effects caused by lake level drops may have combinedly increased nutrient concentration and accelerated lake eutrophication at Lake Daihai. Therefore, proper policy is necessary to slow down anthropogenic impacts and limit further eutrophication for lakes like Lake Daihai.


Assuntos
Sedimentos Geológicos , Lagos , Humanos , Lagos/química , Sedimentos Geológicos/análise , Eutrofização , Qualidade da Água , China , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA