Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Ital J Pediatr ; 50(1): 20, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273353

RESUMO

BACKGROUND: This study aimed to investigate the demographic and clinical characteristics, types of seizure disorders, and antiepileptic drug usage among individuals with different types of corpus callosum disorders. METHODS: A total of 73 individuals were included in the study and divided into three groups based on the type of corpus callosum abnormality: hypoplasia (H), agenesis (A), and dysgenesis (D). Demographic data, including gender and preterm birth, as well as clinical characteristics such as seizure disorders, attention deficit hyperactivity disorder (ADHD), severe developmental delay/intellectual disability, and other brain malformations, were analyzed. The types of seizure disorders and antiepileptic drugs used were also examined. RESULTS: The H group had the highest number of participants (n = 47), followed by the A group (n = 11) and the D group (n = 15). The A group had the highest percentage of males and preterm births, while the D group had the highest percentage of seizure disorders, other brain malformations, and severe developmental delay/intellectual disability. The A group also had the highest percentage of ADHD. Focal seizures were observed in all three groups, with the highest proportion in the A group. Focal impaired awareness seizures (FIAS) were present in all groups, with the highest proportion in the D group. Generalized tonic-clonic seizures (GTCS) were observed in all groups, with the highest proportion in the H group. Different types of antiepileptic drugs were used among the groups, with variations in usage rates for each drug. CONCLUSION: This study provided insights into the demographic and clinical characteristics, seizure disorders, and antiepileptic drug usage among individuals with different types of corpus callosum disorders. Significant differences were found between the groups, indicating the need for tailored management approaches. However, the study has limitations, including a small sample size and a cross-sectional design. Further research with larger sample sizes and longitudinal designs is warranted to validate these findings and explore the relationship between corpus callosum abnormality severity and clinical outcomes.


Assuntos
Epilepsia , Deficiência Intelectual , Nascimento Prematuro , Criança , Masculino , Feminino , Recém-Nascido , Humanos , Anticonvulsivantes/uso terapêutico , Corpo Caloso , Estudos Transversais , Epilepsia/tratamento farmacológico , Epilepsia/epidemiologia , Convulsões/tratamento farmacológico , Convulsões/epidemiologia , Demografia
2.
Antioxidants (Basel) ; 12(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38001861

RESUMO

Amyotrophic lateral sclerosis (ALS) is considered a fatal progressive degeneration of motor neurons (MN) caused by oxidative stress and mitochondrial dysfunction. There are currently no treatments available. The most common inherited form of ALS is the C9orf72 mutation (C9-ALS). The proline-arginine dipeptide repeat protein (PR-DPR) produced by C9-ALS has been confirmed to be a functionally acquired pathogenic factor that can cause increased ROS, mitochondrial defects, and apoptosis in motor neurons. Pectolinarigenin (PLG) from the traditional medicinal herb Linaria vulgaris has antioxidant and anti-apoptotic properties. I established a mouse NSC-34 motor neuron cell line model expressing PR-DPR and confirmed the neuroprotective effect of PLG. The results showed that ROS production and apoptosis caused by PR-DPR could be improved by PLG treatment. In terms of mechanism research, PR-DPR inhibited the activity of the mitochondrial fusion proteins OPA1 and mitofusin 2. Conversely, the expression of fission protein fission 1 and dynamin-related protein 1 (DRP1) increased. However, PLG treatment reversed these effects. Furthermore, I found that PLG increased the expression and deacetylation of OPA1. Deacetylation of OPA1 enhances mitochondrial fusion and resistance to apoptosis. Finally, transfection with Sirt3 small interfering RNA abolished the neuroprotective effects of PLG. In summary, the mechanism by which PLG alleviates PR-DPR toxicity is mainly achieved by activating the SIRT3/OPA1 axis to regulate the balance of mitochondrial dynamics. Taken together, the potential of PLG in preclinical studies for C9-ALS drug development deserves further evaluation.

3.
Cells ; 12(20)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887320

RESUMO

C9orf72 mutations are the most common form of familial amyotrophic lateral sclerosis (C9-ALS). It causes the production of proline-arginine dipeptide repeat proteins (PR-DPRs) in motor neurons (MNs), leading to the molecular pathology characteristic of ALS. UNC13A is critical for maintaining the synaptic function of MNs. Most ALS patients have nuclear deletion of the splicing repressor TDP-43 in MNs, which causes inclusion of the cryptic exon (CE) of UNC13A mRNA, resulting in nonsense-mediated mRNA decay and reduced protein expression. Therefore, in this study, we explored the role of PR-DPR in CE inclusion of UNC13A mRNA. Our results showed that PR-DPR (PR50) induced CE inclusion and decreased the protein expression of UNC13A in human neuronal cell lines. We also identified an interaction between the RNA-binding protein NOVA1 and PR50 by yeast two-hybrid screening. NOVA1 expression is known to be reduced in patients with ALS. We found that knockdown of NOVA1 enhanced CE inclusion of UNC13A mRNA. Furthermore, the naturally occurring triterpene betulin can inhibit the interaction between NOVA1 and PR50, thus preventing CE inclusion of UNC13A mRNA and protein reduction in human neuronal cell lines. This study linked PR-DPR with CE inclusion of UNC13A mRNA and developed candidate therapeutic strategies for C9-ALS using betulin.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Arginina/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/metabolismo , Neurônios Motores/patologia , Antígeno Neuro-Oncológico Ventral , Prolina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Antioxidants (Basel) ; 12(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37891975

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal rare disease of progressive degeneration of motor neurons. The most common genetic mutation in ALS is the hexanucleotide repeat expansion (HRE) located in the first intron of the C9orf72 gene (C9-ALS). HRE can produce dipeptide repeat proteins (DPRs) such as poly glycine-alanine (GA) in a repeat-associated non-ATG (RAN) translation. GA-DPR has been shown to be toxic to motor neurons in various biological models. However, its effects on microglia involved in C9-ALS have not been reported. Here, we show that GA-DPR (GA50) activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome in a human HMC3 microglia model. MCC950 (specific inhibitor of the NLRP3) treatment can abrogate this activity. Next, using yeast two-hybrid screening, we identified sulfide quinone oxidoreductase (SQOR) as a GA50 interacting protein. SQOR knockdown in HMC3 cells can significantly induce the activity of the NLRP3 inflammasome by upregulating the level of intracellular reactive oxygen species and the cytoplasmic escape of mitochondrial DNA. Furthermore, we obtained irisflorentin as an effective blocker of the interaction between SQOR and GA50, thus inhibiting NLRP3 inflammasome activity in GA50-expressing HMC3 cells. These results imply the association of GA-DPR, SQOR, and NLRP3 inflammasomes in microglia and establish a treatment strategy for C9-ALS with irisflorentin.

5.
Cells ; 12(18)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759532

RESUMO

Defective autophagy is one of the cellular hallmarks of Parkinson's disease (PD). Therefore, a therapeutic strategy could be a modest enhancement of autophagic activity in dopamine (DA) neurons to deal with the clearance of damaged mitochondria and abnormal protein aggregates. Syringin (SRG) is a phenolic glycoside derived from the root of Acanthopanax senticosus. It has antioxidant, anti-apoptotic, and anti-inflammatory properties. However, whether it has a preventive effect on PD remains unclear. The present study found that SRG reversed the increase in intracellular ROS-caused apoptosis in SH-SY5Y cells induced by neurotoxin 6-OHDA exposure. Likewise, in C. elegans, degeneration of DA neurons, DA-related food-sensitive behaviors, longevity, and accumulation of α-synuclein were also improved. Studies of neuroprotective mechanisms have shown that SRG can reverse the suppressed expression of SIRT1, Beclin-1, and other autophagy markers in 6-OHDA-exposed cells. Thus, these enhanced the formation of autophagic vacuoles and autophagy activity. This protective effect can be blocked by pretreatment with wortmannin (an autophagosome formation blocker) and bafilomycin A1 (an autophagosome-lysosome fusion blocker). In addition, 6-OHDA increases the acetylation of Beclin-1, leading to its inactivation. SRG can induce the expression of SIRT1 and promote the deacetylation of Beclin-1. Finally, we found that SRG reduced the 6-OHDA-induced expression of miR-34a targeting SIRT1. The overexpression of miR-34a mimic abolishes the neuroprotective ability of SRG. In conclusion, SRG induces autophagy via partially regulating the miR-34a/SIRT1/Beclin-1 axis to prevent 6-OHDA-induced apoptosis and α-synuclein accumulation. SRG has the opportunity to be established as a candidate agent for the prevention and cure of PD.


Assuntos
MicroRNAs , Neuroblastoma , Síndromes Neurotóxicas , Doença de Parkinson , Humanos , Animais , Oxidopamina/farmacologia , Caenorhabditis elegans , alfa-Sinucleína , Proteína Beclina-1 , Sirtuína 1/genética , Autofagia , MicroRNAs/genética
6.
Antioxidants (Basel) ; 12(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37760085

RESUMO

The degeneration of dopamine (DA) neurons is known to be associated with defects in mitochondrial biogenesis caused by aging, environmental factors, or mutations in genes, leading to Parkinson's disease (PD). As PD has not yet been successfully cured, the strategy of using small molecule drugs to protect and restore mitochondrial biogenesis is a promising direction. This study evaluated the efficacy of synthetic chiisanoside (CSS) identified in the leaves of Acanthopanax sessiliflorus to prevent PD symptoms. The results show that in the 6-hydroxydopamine (6-OHDA) model, CSS pretreatment can effectively alleviate the reactive oxygen species generation and apoptosis of SH-SY5Y cells, thereby lessening the defects in the C. elegans model including DA neuron degeneration, dopamine-mediated food sensitivity behavioral disorders, and shortened lifespan. Mechanistically, we found that CSS could restore the expression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α), a key molecule in mitochondrial biogenesis, and its downstream related genes inhibited by 6-OHDA. We further confirmed that this is due to the enhanced activity of parkin leading to the ubiquitination and degradation of PGC-1α inhibitor protein Zinc finger protein 746 (ZNF746). Parkin siRNA treatment abolished this effect of CSS. Furthermore, we found that CSS inhibited 6-OHDA-induced expression of miR-181a, which targets parkin. The CSS's ability to reverse the 6-OHDA-induced reduction in mitochondrial biogenesis and activation of apoptosis was abolished after the transfection of anti-miR-181a and miR-181a mimics. Therefore, the neuroprotective effect of CSS mainly promotes mitochondrial biogenesis by regulating the miR-181a/Parkin/ZNF746/PGC-1α axis. CSS potentially has the opportunity to be developed into PD prevention agents.

7.
Cells ; 12(6)2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36980235

RESUMO

Glioblastoma (GBM) is a primary brain tumor of unknown etiology. It is extremely aggressive, incurable and has a short average survival time for patients. Therefore, understanding the precise molecular mechanisms of this diseases is essential to establish effective treatments. In this study, we cloned and sequenced a splice variant of the hydroxysteroid 11-ß dehydrogenase 1 like gene (HSD11B1L) and named it HSD11B1L-181. HSD11 B1L-181 was specifically expressed only in GBM cells. Overexpression of this variant can significantly promote the proliferation, migration and invasion of GBM cells. Knockdown of HSD11B1L-181 expression inhibited the oncogenic potential of GBM cells. Furthermore, we identified the direct interaction of parkin with HSD11B1L-181 by screening the GBM cDNA expression library via yeast two-hybrid. Parkin is an RBR E3 ubiquitin ligase whose mutations are associated with tumorigenesis. Small interfering RNA treatment of parkin enhanced the proliferative, migratory and invasive abilities of GBM. Finally, we found that the alkaloid peiminine from the bulbs of Fritillaria thunbergii Miq blocks the interaction between HSD11B1L-181 and parkin, thereby lessening carcinogenesis of GBM. We further confirmed the potential of peiminine to prevent GBM in cellular, ectopic and orthotopic xenograft mouse models. Taken together, these findings not only provide insight into GBM, but also present an opportunity for future GBM treatment.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Neoplasias Encefálicas , Glioblastoma , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/efeitos dos fármacos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogênese/genética , Cevanas/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Isoformas de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Food Chem Toxicol ; 173: 113636, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708866

RESUMO

Mitochondrial dysfunction has been implicated in Parkinson's disease. Mic60 is a critical component of mitochondrial crista remodeling and participates in maintaining mitochondrial structure and function. This study investigated whether the carnosic acid (CA) of rosemary protects the mitochondria of SH-SY5Y cells against the neurotoxicity of 6-hydroxydopamine (6-OHDA) by regulating Mic60. Our results showed that CA pretreatment reversed the reduction in the Mic60 and citrate synthase proteins, as well as the protein induction of PKA caused by 6-OHDA. Moreover, Mic60 and PINK1 siRNAs blocked the ability of CA to lessen the release of mitochondrial cytochrome c by 6-OHDA. As shown by immunoprecipitation assay, in 6-OHDA-treated cells, the interaction of Mic60 with its phosphorylated threonine residue was decreased, but the interaction with its phosphorylated serine residue was increased. PINK1 siRNA and forskolin, a PKA activator, reversed these interactions. Moreover, forskolin pretreatment prevented CA from rescuing the interaction of PINK1 and Mic60 and the reduction in cytochrome c release and mitophagy impairment in 6-OHDA-treated cells. In conclusion, CA prevents 6-OHDA-induced cytochrome c release by regulating Mic60 phosphorylation by PINK1 through a downregulation of PKA. The regulation of Mic60 by CA can be considered as a protective mechanism for the prevention of Parkinson's disease.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , Oxidopamina/toxicidade , Citocromos c/metabolismo , Proteínas Mitocondriais/metabolismo , Doença de Parkinson/metabolismo , Colforsina/metabolismo , Neuroblastoma/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , RNA Interferente Pequeno , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Apoptose
9.
Antioxidants (Basel) ; 11(11)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36358461

RESUMO

We assessed the antioxidant potential of narcissoside from Sambucus nigra flowers (elderflowers) in Parkinson's disease models in vitro and in vivo. The results showed that narcissoside lessened the 6-hydroxydopamine (6-OHDA)-induced increase in reactive oxygen species (ROS) and apoptosis in SH-SY5Y cells. In the 6-OHDA-exposed Caenorhabditis elegans model, narcissoside reduced degeneration of dopaminergic neurons and ROS generation, and also improved dopamine-related food-sensitive behavior and shortened lifespan. Moreover, NCS increased total glutathione (GSH) by increasing the expression of the catalytic subunit and modifier subunit of γ-glutamylcysteine ligase in cells and nematodes. Treatment with a GSH inhibitor partially abolished the anti-apoptotic ability of narcissoside. Furthermore, narcissoside diminished the 6-OHDA-induced phosphorylation of JNK and p38, while rising activities of ERK and Akt in resisting apoptosis. The antioxidant response element (ARE)-luciferase reporter activity analysis and electromobility gel shift assay showed that narcissoside promotes the transcriptional activity mediated by Nrf2. Finally, we found that narcissoside augmented the expression of miR200a, a translational inhibitor of the Nrf2 repressor protein Keap1. Downregulation of Nrf2 and miR200a by RNAi and anti-miR200a, respectively, reversed the neuroprotective ability of narcissoside. In summary, narcissoside can enhance the miR200a/Nrf2/GSH antioxidant pathway, alleviate 6-OHDA-induced apoptosis, and has the neuroprotective potential.

10.
Cells ; 11(19)2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36231090

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal disease in which motor neurons gradually degenerate. The mutation of the C9orf72 gene is the main genetic cause of ALS (C9-ALS). One of its specific pathological features is the production of proline-arginine (PR) dipeptide repeat protein (DPR). In this study, we developed a PR-DPR (PR50)-expressing human HMC3 microglial cell model. We found that PR50 mainly aggregates into spots in the nucleus and induces significant NLRP3 inflammasome activity. Moreover, mouse NSC-34 motor neuron cells treated with a conditional medium of PR50-expressing HMC3 cells (PR-CM) caused cell damage and apoptosis activity. However, R50-expressing HMC cells treated with MCC950 (an NLRP3 inhibitor) reversed this result. Furthermore, we identified complement component 1 q subcomponent-binding protein (C1QBP) as one of the interaction partners of PR50. The downregulation of C1QBP in HMC3 cells induces NLRP3 inflammasome activity similar to PR50 expression. Finally, we found that syringin can block the interaction between PR50 and C1QBP, and effectively reduce the PR50-induced NLRP3 inflammasome activity in HMC3 cells. This improves the apoptosis of NSC-34 cells caused by PR-CM. This study is the first to link PR50, C1QBP, and NLRP3 inflammasome activity in microglia and develop potential therapeutic strategies for syringin intervention in C9-ALS.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/metabolismo , Animais , Arginina , Proteína C9orf72/genética , Proteínas de Transporte , Complemento C1/metabolismo , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Glucosídeos , Humanos , Inflamassomos/metabolismo , Camundongos , Microglia/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fenilpropionatos , Prolina , Proteínas/metabolismo
11.
Cancers (Basel) ; 14(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010884

RESUMO

Brain-enriched myelin-associated protein 1 (BCAS1) is frequently highly expressed in human cancer, but its detailed function is unclear. Here, we identified a novel splice variant of the BCAS1 gene in glioblastoma multiforme (GBM) named BCAS1-SV1. The expression of BCAS1-SV1 was weak in heathy brain cells but high in GBM cell lines. The overexpression of BCAS1-SV1 significantly increased the proliferation and migration of GBM cells, whereas the RNA-interference-mediated knockdown of BCAS1-SV1 reduced proliferation and migration. Moreover, using a yeast-two hybrid assay, immunoprecipitation, and immunofluorescence staining, we confirmed that ß-arrestin 2 is an interaction partner of BCAS1-SV1 but not BCAS1. The downregulation of ß-arrestin 2 directly enhanced the malignancy of GBM and abrogated the effects of BCAS1-SV1 on GBM cells. Finally, we used a yeast two-hybrid-based growth assay to identify that maackiain (MK) is a potential inhibitor of the interaction between BCAS1-SV1 and ß-arrestin 2. MK treatment lessened the proliferation and migration of GBM cells and prolonged the lifespan of tumor-bearing mice in subcutaneous xenograft and intracranial U87-luc xenograft models. This study provides the first evidence that the gain-of-function BCAS1-SV1 splice variant promotes the development of GBM by suppressing the ß-arrestin 2 pathway and opens up a new therapeutic perspective in GBM.

12.
Cancers (Basel) ; 13(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34771481

RESUMO

Gold nanoparticles (AuNPs) were fabricated with biocompatible collagen (Col) and then conjugated with berberine (BB), denoted as Au-Col-BB, to investigate the endocytic mechanisms in Her-2 breast cancer cell line and in bovine aortic endothelial cells (BAEC). Owing to the superior biocompatibility, tunable physicochemical properties, and potential functionalization with biomolecules, AuNPs have been well studied as carriers of biomolecules for diseases and cancer therapeutics. Composites of AuNPs with biopolymer, such as fibronectin or Col, have been revealed to increase cell proliferation, migration, and differentiation. BB is a natural compound with impressive health benefits, such as lowering blood sugar and reducing weight. In addition, BB can inhibit cell proliferation by modulating cell cycle progress and autophagy, and induce cell apoptosis in vivo and in vitro. In the current research, BB was conjugated on the Col-AuNP composite ("Au-Col"). The UV-Visible spectroscopy and infrared spectroscopy confirmed the conjugation of BB on Au-Col. The particle size of the Au-Col-BB conjugate was about 227 nm, determined by dynamic light scattering. Furthermore, Au-Col-BB was less cytotoxic to BAEC vs. Her-2 cell line in terms of MTT assay and cell cycle behavior. Au-Col-BB, compared to Au-Col, showed greater cell uptake capacity and potential cellular transportation by BAEC and Her-2 using the fluorescence-conjugated Au-Col-BB. In addition, the clathrin-mediated endocytosis and cell autophagy seemed to be the favorite endocytic mechanism for the internalization of Au-Col-BB by BAEC and Her-2. Au-Col-BB significantly inhibited cell migration in Her-2, but not in BAEC. Moreover, apoptotic cascade proteins, such as Bax and p21, were expressed in Her-2 after the treatment of Au-Col-BB. The tumor suppression was examined in a model of xenograft mice treated with Au-Col-BB nanovehicles. Results demonstrated that the tumor weight was remarkably reduced by the treatment of Au-Col-BB. Altogether, the promising findings of Au-Col-BB nanocarrier on Her-2 breast cancer cell line suggest that Au-Col-BB may be a good candidate of anticancer drug for the treatment of human breast cancer.

13.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638579

RESUMO

Parkinson's disease (PD) is a degenerative disease that can cause motor, cognitive, and behavioral disorders. The treatment strategies being developed are based on the typical pathologic features of PD, including the death of dopaminergic (DA) neurons in the substantia nigra of the midbrain and the accumulation of α-synuclein in neurons. Peiminine (PMN) is an extract of Fritillaria thunbergii Miq that has antioxidant and anti-neuroinflammatory effects. We used Caenorhabditis elegans and SH-SY5Y cell models of PD to evaluate the neuroprotective potential of PMN and address its corresponding mechanism of action. We found that pretreatment with PMN reduced reactive oxygen species production and DA neuron degeneration caused by exposure to 6-hydroxydopamine (6-OHDA), and therefore significantly improved the DA-mediated food-sensing behavior of 6-OHDA-exposed worms and prolonged their lifespan. PMN also diminished the accumulation of α-synuclein in transgenic worms and transfected cells. In our study of the mechanism of action, we found that PMN lessened ARTS-mediated degradation of X-linked inhibitor of apoptosis (XIAP) by enhancing the expression of PINK1/parkin. This led to reduced 6-OHDA-induced apoptosis, enhanced activity of the ubiquitin-proteasome system, and increased autophagy, which diminished the accumulation of α-synuclein. The use of small interfering RNA to down-regulate parkin reversed the benefits of PMN in the PD models. Our findings suggest PMN as a candidate compound worthy of further evaluation for the treatment of PD.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cevanas/farmacologia , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , alfa-Sinucleína/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Degeneração Neural/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Substância Negra/metabolismo , Ubiquitina/metabolismo
14.
Phytomedicine ; 80: 153369, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33070082

RESUMO

BACKGROUND: Impairment of mitochondrial biogenesis is associated with the pathological progression of Parkinson's disease (PD). Parkin-interacting substrate (PARIS) can be ubiquitinated by parkin and prevents the repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α). PURPOSE: This study investigated whether the neuroprotective mechanism of carnosic acid (CA) from rosemary is mediated via the regulation of PARIS and PGC-1α by parkin. METHODS: The Western blotting and RT-PCR were used to determine protein and mRNA, respectively. To investigate the protein-protein interaction of between PARIS and ubiquitin, the immunoprecipitation assay (IP assay) was utilized. Silencing of endogenous parkin or PGC-1α was performed by using transient transfection of small interfering RNA (siRNA). RESULTS: SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA) increased PARIS protein, decreased PGC-1α protein, and reduced protein and mRNA of mitochondrial biogenesis-related genes. CA pretreatment reversed the effects of 6-OHDA. By IP assay, the interaction of PARIS with ubiquitin protein caused by CA was stronger than that caused by 6-OHDA. Moreover, knockdown of parkin attenuated the ability of CA to reverse the 6-OHDA-induced increase in PARIS and decrease in PGC-1α expression. PGC-1α siRNA was used to investigate how CA influenced the effect of 6-OHDA on the modulation of mitochondrial biogenesis and apoptosis. In the presence of PGC-1α siRNA, CA could no longer significantly reverse the reduction of mitochondrial biogenesis or the induction of cleavage of apoptotic-related proteins by 6-OHDA. CONCLUSION: The cytoprotective of CA is related to the enhancement of mitochondrial biogenesis by inhibiting PARIS and inducing PGC-1α by parkin. The activation of PGC-1α-mediated mitochondrial biogenesis by CA prevents the degeneration of dopaminergic neurons, CA may have therapeutic application in PD.


Assuntos
Abietanos/farmacologia , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Repressoras/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biogênese de Organelas , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
ACS Appl Mater Interfaces ; 12(40): 44393-44406, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32697572

RESUMO

Controlling the behavior of mesenchymal stem cells (MSCs) through topographic patterns is an effective approach for stem cell studies. We, herein, reported a facile method to create a dopamine (DA) pattern on poly(dimethylsiloxane) (PDMS). The topography of micropatterned DA was produced on PDMS after plasma treatment. The grid-topographic-patterned surface of PDMS-DA (PDMS-DA-P) was measured for adhesion force and Young's modulus by atomic force microscopy. The surface of PDMS-DA-P demonstrated less stiff and more elastic characteristics compared to either nonpatterned PDMS-DA or PDMS. The PDMS-DA-P evidently enhanced the differentiation of MSCs into various tissue cells, including nerve, vessel, bone, and fat. We further designed comprehensive experiments to investigate adhesion, proliferation, and differentiation of MSCs in response to PDMS-DA-P and showed that the DA-patterned surface had good biocompatibility and did not activate macrophages or platelets in vitro and had low foreign body reaction in vivo. Besides, it protected MSCs from apoptosis as well as excessive reactive oxygen species (ROS) generation. Particularly, the patterned surface enhanced the differentiation capacity of MSCs toward neural and endothelial cells. The stromal cell-derived factor-1α/CXantiCR4 pathway may be involved in mediating the self-recruitment and promoting the differentiation of MSCs. These findings support the potential application of PDMS-DA-P in either cell treatment or tissue repair.


Assuntos
Materiais Biocompatíveis/farmacologia , Dimetilpolisiloxanos/farmacologia , Dopamina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dimetilpolisiloxanos/química , Dopamina/química , Humanos , Células-Tronco Mesenquimais/metabolismo , Microscopia de Força Atômica , Estrutura Molecular , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
16.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585871

RESUMO

The movement disorder Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease, and is associated with aging, the environment, and genetic factors. The intracellular aggregation of α-synuclein and the loss of dopaminergic neurons in the substantia nigra pars compacta are the pathological hallmark of PD. At present, there is no successful treatment for PD. Maackiain (MK) is a flavonoid extracted from dried roots of Sophora flavescens Aiton. MK has emerged as a novel agent for PD treatment that acts by inhibiting monoamine oxidase B. In this study, we assessed the neuroprotective potential of MK in Caenorhabditis elegans and investigated possible mechanism of this neuroprotection in the human SH-SY5Y cell line. We found that MK significantly reduced dopaminergic neuron damage in 6-hydroxydopamine (6-OHDA)-exposed worms of the BZ555 strain, with corresponding improvements in food-sensing behavior and life-span. In transgenic worms of strain NL5901 treated with 0.25 mM MK, the accumulation of α-synuclein was diminished by 27% (p < 0.01) compared with that in untreated worms. Moreover, in worms and the SH-SY5Y cell line, we confirmed that the mechanism of MK-mediated protection against PD pathology may include blocking apoptosis, enhancing the ubiquitin-proteasome system, and augmenting autophagy by increasing PINK1/parkin expression. The use of small interfering RNA to downregulate parkin expression in vivo and in vitro could reverse the benefits of MK in PD models. MK may have considerable therapeutic applications in PD.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Proteínas Quinases/metabolismo , Pterocarpanos/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/toxicidade , Adrenérgicos/toxicidade , Animais , Apoptose , Autofagia , Caenorhabditis elegans/crescimento & desenvolvimento , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma/etiologia , Neuroblastoma/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética
17.
Sci Rep ; 10(1): 2187, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042022

RESUMO

Maintaining the pluripotency of either embryonic stem (ES) cells or induced pluripotent stem (iPS) cells is a fundamental part of stem cell research. In this study, we reported that cordycepin promoted the expression of pluripotency markers in ES and iPS cells. ES cells treated with cordycepin demonstrated their potential for generating embryoid bodies and differentiating into all three germ layers. The expression levels of phospho-Jak2, phospho-Stat3, integrin αV, and integrin ß5 were increased after cordycepin treatment. Furthermore, the protein expression levels of IL-6 family proteins (IL-6, IL-11, LIF, oncostatin M (OSM), ciliary neurotrophic factor (CNTF)), and epidermal growth factor (EGF) were also upregulated after cordycepin treatment, but were restored after co-treatment with a Jak2 inhibitor (AG490). The gene expression levels of Yamanaka factors were upregulated in mouse embryonic fibroblasts (MEFs) after cordycepin treatment. Moreover, the generation efficiencies of iPS cells were elevated after cordycepin treatment. We found that iPS cells generated after cordycepin treatment, not only expressed pluripotency markers, but also showed the ability of differentiating into neuron stem/progenitor cells. Taken together, we demonstrated that cordycepin maintained the pluripotency of stem cells via regulation of extracellular matrix (ECM) and Jak2/Stat3 signaling pathway and improved the generation efficiency of iPSCs.


Assuntos
Desoxiadenosinas/farmacologia , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular/genética , Células Cultivadas , Desoxiadenosinas/metabolismo , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Integrinas/metabolismo , Janus Quinase 2/metabolismo , Camundongos , Células-Tronco Pluripotentes/efeitos dos fármacos , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
18.
Food Chem Toxicol ; 136: 110942, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31705926

RESUMO

An imbalance in mitochondrial dynamics is strongly associated with Parkinson's disease. The fusion protein optic atrophy 1 (OPA1) is up-regulated through the activation of parkin-mediated IκB kinase γ (IKKγ)/p65 signaling. This study investigated whether the neuroprotection of carnosic acid (CA) from rosemary is involved in mitochondrial dynamics and OPA1 protein induction by parkin/IKKγ/p65 signaling. The neurotoxin 6-hydroxydopamine (6-OHDA) treated with SH-SY5Y cells decreased OPA1 and mitofusin 2 fusion proteins, but increased fission 1 and dynamin related protein 1 (DRP1) fission proteins. By immunofluorescence, 6-OHDA induced the fluorescence of green spots outside the mitochondria, indicating that cytochrome c was released to the cytoplasm. Except for the effects on DRP1 protein, CA pretreatment reversed these effects of 6-OHDA. Additionally, CA treatment increased the ubiquitination of IKKγ, nuclear p65 protein, OPA1-p65 DNA binding activity, and OPA1 protein. However, transfection of parkin small interfering RNA (siRNA) attenuated these effects of CA. Furthermore, transfection of OPA1 siRNA abolished the action of CA to reverse 6-OHDA-increased cytosolic cytochrome c protein, apoptotic-related protein cleavage, and cell death. In conclusion, the mechanism by which CA counteracts the toxicity of 6-OHDA is through modulation of mitochondrial dynamics and upregulation of OPA1 via activation of the parkin/IKKγ/p65 pathway.


Assuntos
Abietanos/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Quinase I-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Apoptose/efeitos dos fármacos , Sequência de Bases , Linhagem Celular Tumoral , Humanos , Quinase I-kappa B/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Neurotoxinas/toxicidade , Oxidopamina/toxicidade , Fator de Transcrição RelA/metabolismo , Ubiquitinação/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
19.
Nutr Res Pract ; 13(4): 286-294, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31388404

RESUMO

BACKGROUND/OBJECTIVES: Docosahexaenoic acid (DHA), an n-3 long chain polyunsaturated fatty acid (LCPUFA), is acquired by dietary intake or the in vivo conversion of α-linolenic acid. Many enzymes participating in LCPUFA synthesis are regulated by peroxisome proliferator-activated receptor alpha (PPARα). Therefore, it was hypothesized that the tissue accretion of endogenously synthesized DHA could be modified by PPARα. MATERIALS/METHODS: The tissue DHA concentrations and mRNA levels of genes participating in DHA biosynthesis were compared among PPARα homozygous (KO), heterozygous (HZ), and wild type (WT) mice (Exp I), and between WT mice treated with clofibrate (PPARα agonist) or those not treated (Exp II). In ExpII, the expression levels of the proteins associated with DHA function in the brain cortex and retina were also measured. An n3-PUFA depleted/replenished regimen was applied to mitigate the confounding effects of maternal DHA. RESULTS: PPARα ablation reduced the hepatic Acox, Fads1, and Fads2 mRNA levels, as well as the DHA concentration in the liver, but not in the brain cortex. In contrast, PPARα activation increased hepatic Acox, Fads1, Fads2 and Elovl5 mRNA levels, but reduced the DHA concentrations in the liver, retina, and phospholipid of brain cortex, and decreased mRNA and protein levels of the brain-derived neurotrophic factor in brain cortex. CONCLUSIONS: LCPUFA enzyme expression was altered by PPARα. Either PPARα deficiency or activation-decreased tissue DHA concentration is a stimulus for further studies to determine the functional significance.

20.
Toxins (Basel) ; 11(5)2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31072027

RESUMO

Aflatoxins are carcinogenic secondary metabolites of fungi that contaminate many staple crops and foods. Aflatoxin contamination is a worldwide problem, especially in developing countries, posing health hazards, e.g., causing aflatoxicosis and hepatocellular carcinoma, and even death. Biological solutions for aflatoxin detoxification are environmentally friendly and a cheaper alternative than chemical methods. The aims of the current study were to investigate: (1) the ability of MSMEG_5998, an aflatoxin-degrading F420H2-dependent reductase from Mycobacterium smegmatis, to degrade aflatoxin B1 (AFB1) and reduce AFB1-caused damage in HepG2 cell culture model; and (2) whether a thioredoxin (Trx) linkage of MSMEG_5998 enhanced the enzyme activity. We show that Trx-linked MSMEG_5998 degraded 63% AFB1 and native MSMEG_5998 degraded 31% after 4 h at 22 °C, indicating that the Trx-linked enzyme had a better AFB1-degrading ability. In a HepG2 cell culture model, Trx-linked MSMEG_5998 reduced DNA damage and p53-mediated apoptosis caused by AFB1 to a greater extent than the native enzyme. These findings suggest that Trx-linked MSMEG_5998 could potentially be developed to protect the liver from AFB1 damage, or as a candidate protein to reduce AFB1-related toxicity in animals.


Assuntos
Aflatoxinas/toxicidade , Mycobacterium smegmatis/enzimologia , Oxirredutases/farmacologia , Substâncias Protetoras/farmacologia , Apoptose/efeitos dos fármacos , Dano ao DNA , Estabilidade Enzimática , Células Hep G2 , Humanos , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA