Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(22): e202403878, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38506535

RESUMO

Optically active π-conjugated polymers (OACPs) have garnered increasing research interest for their resemblance to biological helices and intriguing chirality-related functions. Traditional methods for synthesizing involve decorating achiral conjugated polymer architectures with enantiopure side substituents through complex organic synthesis. Here, we report a new approach: the templated synthesis of unsubstituted OACPs via supramolecularly confined polymerizations of achiral monomers within nanopores of 2D or 3D chiral covalent organic frameworks (CCOFs). We show that the chiral π-rich nanospaces facilitate the in situ enantiospecific polymerization and self-propagation, akin to nonenzymatic polymerase chain reaction (PCR) system, resulting in chiral imprinting. The stacked polymer chains are kinetically inert enough to memorize the chiral information after liberating from CCOFs, and even after treatment at temperature up to 200 °C. The isolated OACPs demonstrate robust enantiodiscrimination, achieving up to 85 % ee in separating racemic amino acids. This underscores the potential of utilizing CCOFs as templates for supramolecularly imprinting optical activity into CPs, paving the way for synthetic evolution and advanced functional exploration of OACPs.

2.
J Am Chem Soc ; 146(1): 635-645, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38148276

RESUMO

Covalent organic frameworks (COFs) have undergone extensive research as heterogeneous catalysts for a wide range of significant reactions, but they have not yet been investigated in the realm of electrochemical asymmetric catalysis, despite their recognition as an economical and sustainable strategy for producing enantiopure compounds. Here, we report a mixed-linker strategy to design multicomponent two-dimensional (2D) chiral COFs with tunable layer stacking for highly enantioselective electrocatalysis. By crystallizing mixtures of triamines with and without the MacMillan imidazolidinone catalyst or aryl substituent (ethyl and isopropyl) and a dialdehyde derivative of thieno-[3,2-b]thiophene, we synthesized and structurally characterized a series of three-component homochiral 2D COFs featuring either AA or ABC stacking. The stacking modes that can be synthetically controlled through steric tuning using different aryl substituents affect their chemical stability and electrochemical performance. With the MacMillan catalyst periodically appended on their channels, all three COFs with conductive thiophene moieties can be highly enantioselective and recyclable electrocatalysts for the asymmetric α-arylation of aldehydes, affording alkylated anilines with up to 97% enantiomeric excess by an anodic oxidation/organocatalytic protocol. Presumably due to their higher charge transfer ability, the ABC stacking COFs exhibit improved reactivity compared to the AA stacking analogue. This work therefore advances COFs as electrocatalysts for asymmetric catalysis and may facilitate the design of more redox-active crystalline organic polymers for electrochemical enantioselective processes.

3.
J Am Chem Soc ; 145(34): 18956-18967, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37596711

RESUMO

The separation of enantiomers using high-performance chromatography technologies represents great importance and interest. In this aspect, ß-cyclodextrin (ß-CD) and its derivatives have been extensively studied as chiral stationary phases (CSPs). Nevertheless, ß-CD that was immobilized on a traditional matrix often exhibited low stabilities and limited operating ranges. Recently, covalent organic frameworks (COFs) with highly ordered nanopores are emerging as promising CSPs for enantioseparations, but their practical applications are still hampered by the difficulty of monomer and COF synthesis. Herein, two ß-CD-driven COFs are synthesized via a fast and facile plasma-induced polymerization combined postsynthesis modification strategy. The precisely defined COF channels enhanced the accessibility of the accommodated ß-CD to the analytes and acted as robust protective barriers to safeguard the ß-CD from harsh environments. Therefore, the ß-CD-modified COFs can be potentially general CSPs for extensive enantioseparation in both gas chromatography and high-performance liquid chromatography, and a wide range of racemates were separated. Compared to the commonly employed commercial chiral columns, these COF-based columns exhibited comparable resolution capability and superior application versatility. This work integrates the advantages and overcomes the defects of COFs and ß-CD, thus advancing COFs as platforms for chiral selector modification and giving great promise for practical chromatographic enantioseparation.

4.
J Am Chem Soc ; 143(1): 369-381, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356183

RESUMO

While crystalline covalent organic frameworks (COFs) linked by C-C bonds are highly desired in synthetic chemistry, it remains a formidable challenge to synthesize. Efforts to generate C-C single bonds in COFs via de novo synthesis usually afford amorphous structures rather than crystalline phases. We demonstrate here that C-C single bond-based COFs can be prepared by direct reduction of C═C bond-linked frameworks via crystal-to-crystal transformation. By Knoevenagel polycondensation of chiral tetrabenzaldehyde of dibinaphthyl-22-crown-6 with 1,4-phenylenediacetonitrile or 4,4'-biphenyldiacetonitrile, two olefin-linked chiral COFs with 2D layered tetragonal structure are prepared. Reduction of olefin linkages of the as-prepared CCOFs produces two C-C single bond linked frameworks, which retains high crystallinity and porosity as well as high chemical stability in both strong acids and bases. The quantitative reduction is confirmed by Fourier transform infrared and cross-polarization magic angle spinning 13C NMR spectroscopy. Compared to the pristine structures, the reduced CCOFs display blue-shifted emission with enhanced quantum yields and fluorescence lifetimes, while the parent CCOFs exhibit higher enantioselectivity than the reduced analogs when be used as fluorescent sensors to detect chiral amino alcohols via supramolecular interactions with the built-in crown ether moieties. This work provides an attractive strategy for making chemically stable functionalized COFs with new linkages that are otherwise hard to produce.

5.
J Chromatogr A ; 1557: 99-106, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29739613

RESUMO

A highly ordered chiral mesoporous silica-coated capillary column has been used for high-resolution gas chromatographic separations. The column has excellent selectivity, not only for the separation of isomers, polycyclic aromatic hydrocarbons, linear alkanes, long chain alkanes, Grob's test mixture and aromatic hydrocarbons, but also for the resolution of different classes of chiral compounds. Additionally, the column exhibits high column efficiency, excellent temperature resistance, and analysis times are short. This is the first report of a highly ordered chiral inorganic mesoporous silica used in separation science.


Assuntos
Compostos Inorgânicos/química , Alcanos/análise , Alcanos/isolamento & purificação , Cromatografia Gasosa/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Porosidade , Reprodutibilidade dos Testes , Dióxido de Silício/química , Estereoisomerismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA