Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Bioorg Med Chem ; 98: 117582, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171253

RESUMO

In this study, we explored a concise and mild synthetic route to produce novel C-14 arylcarbamate derivatives of andrographolide, a known anti-inflammatory and anticancer natural product. Upon assessing their anti-cancer efficacy against pancreatic ductal adenocarcinoma (PDAC) cells, some derivatives showed stronger cytotoxicity against PANC-1 cells than andrographolide. In addition, we demonstrated one derivative, compound 3m, effectively reduced the expression of oncogenic p53 mutant proteins (p53R273H and p53R248W), proliferation, and migration in PDAC lines, PANC-1 and MIA PaCa-2. Accordingly, the novel derivative holds promise as an anti-cancer agent against pancreatic cancer. In summary, our study broadens the derivative library of andrographolide and develops an arylcarbamate derivative of andrographolide with promising anticancer activity against PDAC.


Assuntos
Carcinoma Ductal Pancreático , Diterpenos , Neoplasias Pancreáticas , Humanos , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Diterpenos/farmacologia , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068895

RESUMO

Sepsis results from uncontrolled inflammation, characterized by cytokine storm and immunoparalysis. To assess whether galgravin, a natural lignan isolated from Piper kadsura, can be used to treat sepsis, models of bacterial lipopolysaccharide (LPS)-activated macrophages and LPS-induced endotoxemia mice were used. Galgravin suppressed NF-κB activation in LPS-activated RAW 264.7 macrophages without causing significant cytotoxicity, in which proinflammatory molecules like TNF-α, IL-6, iNOS, and COX-2 were downregulated. In addition, the expression of TNF-α and IL-6 was also suppressed by galgravin in LPS-activated murine bone marrow-derived macrophages. Moreover, galgravin significantly downregulated the mRNA expression of TNF-α, IL-6, and iNOS in the lungs and decreased TNF-α and IL-6 in the serum and IL-6 in the bronchoalveolar lavage fluid of LPS-challenged mice. The COX-2 expression in tissues, including the lung, liver, and kidney, as well as the lung alveolar hemorrhage, was also reduced by galgravin. The present study reveals the anti-inflammatory effects of galgravin in mouse models and implies its potential application in inflammation diseases.


Assuntos
Endotoxemia , Kadsura , Lignanas , Piper , Camundongos , Animais , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Kadsura/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Endotoxemia/induzido quimicamente , Endotoxemia/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Interleucina-6/genética , Interleucina-6/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inflamação/metabolismo , Lignanas/uso terapêutico
4.
J Tradit Complement Med ; 13(4): 379-388, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37396154

RESUMO

Background and aim: Sepsis causes an uncontrolled systemic response characterized by excessive inflammation and immune suppression, leading to multiple organ failure and death. An effective therapeutic strategy for sepsis-related syndromes is urgently needed. Hypericum sampsonii Hance (HS) is a folk herbal plant used to treat arthritis and dermatitis, but the anti-inflammatory properties of HS and its related compounds have rarely been investigated. In this study, we aimed to explore the anti-inflammatory effects of HS. Experimental procedure: Models of bacterial lipopolysaccharide (LPS)-induced activated macrophages and endotoxemia mice were used, in which the TLR4/NF-κB signaling pathway is upregulated to trigger inflammatory responses. The HS extract (HSE) was delivered into LPS-induced endotoxemia mice via oral administration. Three compounds were purified using column chromatography and preparative thin layer chromatography and were validated by physical and spectroscopic data. Results: HSE suppressed NF-κB activation and proinflammatory molecules (TNF-α, IL-6, iNOS) in LPS-activated RAW 264.7 macrophages. Furthermore, oral administration of HSE (200 mg/kg) to LPS-treated mice improved the survival rate, restored body temperature, decreased TNF-α and IL-6 in serum, and reduced IL-6 expression in bronchoalveolar lavage fluid (BALF). In lung tissues, HSE reduced LPS-induced leukocyte infiltration and the expression of proinflammatory molecules (TNF-α, IL-6, iNOS, CCL4 and CCL5). Three pure compounds isolated from HSE, including 2,4,6-trihydroxybenzophenone-4-O-geranyl ether, 1-hydroxy-7 methoxyxanthone and euxanthone, were demonstrated to exhibit anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophages. Conclusion: The present study demonstrated the anti-inflammatory effects of HS in vitro and in vivo. Further clinical studies of HS in human sepsis are warranted.

5.
Biochem Pharmacol ; 206: 115327, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36330949

RESUMO

Triple-negative breast cancers (TNBCs) are difficult to cure and currently lack of effective treatment strategies. Cancer stem cells (CSCs) are highly associated with the poor clinical outcome of TNBCs. Thoc1 is a core component of the THO complex (THOC) that regulates the elongation, processing and nuclear export of mRNA. The function of thoc1 in TNBC and whether Thoc1 serves as a drug target are poorly understood. In this study, we demonstrated that thoc1 expression is elevated in TNBC cell lines and human TNBC patient tissues. Knockdown of thoc1 decreased cancer stem cell populations, reduced mammosphere formation, impaired THOC function, and downregulated the expression of stemness-related proteins. Moreover, the thoc1-knockdown 4T1 cells showed less lung metastasis in an orthotopic breast cancer mouse model. Overexpression of Thoc1 promoted TNBC malignancy and the mRNA export of stemness-related genes. Furthermore, treatment of TNBC cells with the natural compound andrographolide reduced the expression of Thoc1 expression, impaired homeostasis of THOC, suppressed CSC properties, and delayed tumor growth in a 4T1-implanted orthotopic mouse model. Andrographolide also reduced the activity of NF-κB, an upstream transcriptional regulator of Thoc1. Notably, thoc1 overexpression attenuates andrographolide-suppressed cellular proliferation. Altogether, our results demonstrate that THOC1 promotes cancer stem cell characteristics of TNBC, and andrographolide is a potential natural compound for eliminating CSCs of TNBCs by downregulating the NF-κB-thoc1 axis.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neoplásicas , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
6.
Front Pharmacol ; 13: 744439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387343

RESUMO

COVID-19 is a global epidemic. Developing adjuvant therapies which could prevent the virus from binding to cells may impair viral infection. This study produces a traditional Chinese medicine formula, Jing Guan Fang (JGF), based on ancient medical texts, and examines the efficacy and the mechanism by which JGF prevents viral infections. JGF reduces COVID-19 like symptoms. Functional studies show that JGF inhibits the formation of syncytium and reduces the formation of viral plaque. JGF is not toxic in vitro and in vivo. Mechanistically, JGF induces lysosomal-dependent ACE2 degradation and suppresses mRNA and the protein levels of TMPRSS2 in human lung WI-38 and MRC-5 cells. Mice that inhale JGF exhibit reduced ACE2 and TMPRSS2 protein levels in lung tissues. Together, these findings suggest that JGF may improve the COVID-19 like symptoms and inhibit viral infection. Moreover, JGF may be applicable as an adjuvant preventive strategy against SARS-CoV-2 infection in addition to the use of vaccines.

7.
J Chin Med Assoc ; 85(6): 717-722, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35421875

RESUMO

BACKGROUND: The symptoms of coronavirus disease 2019 (COVID-19) such as hyposmia, rhinorrhea, nasal obstruction, and cough are similar to those of chronic allergic rhinitis (AR). Such symptoms can easily lead AR patients to unnecessary anxiety, misdiagnosis, and invasive diagnostic tests in the COVID-19 pandemic. Interleukin-6 (IL-6) is an important mediator for chronic AR and plays a crucial role in the inflammation of COVID-19. Houttuynia cordata (HC) has been shown to reduce nasal congestion and swelling by suppressing the activation of IL-6 and is used to fight COVID-19. A novel HC-based Chinese herbal formula, Zheng-Yi-Fang (ZYF), was developed to test effects on nasal symptoms of patients with AR in the COVID-19 pandemic. METHODS: Participants aged between 20 and 60 years with at least a 2-year history of moderate to severe perennial AR were enrolled. Eligible participants were randomly allocated to either the intervention group (taking ZYF) or the control group (using regular western medicine) for 4 weeks. The Chinese version of the Rhinosinusitis Outcome Measures was used to evaluate impacts on quality of life and nasal symptoms of participants with AR. In addition, the effect of ZYF on lipopolysaccharide (LPS)-induced IL-6 was investigated. RESULTS: Participants with AR taking ZYF improved their symptoms of nasal obstruction, nasal secretion, hyposmia, and postnasal drip in comparison with those of the control group. Meanwhile, ZYF exhibited inhibition of IL-6 secretion in the LPS-induced inflammatory model. CONCLUSION: ZYF has potential effects to relieve nasal symptoms for AR during the COVID-19 pandemic.


Assuntos
Medicamentos de Ervas Chinesas , Houttuynia , Rinite Alérgica , Adulto , Anosmia , COVID-19 , China , Medicamentos de Ervas Chinesas/uso terapêutico , Houttuynia/química , Humanos , Interleucina-6 , Lipopolissacarídeos , Pessoa de Meia-Idade , Pandemias , Qualidade de Vida , Rinite Alérgica/tratamento farmacológico , Adulto Jovem
8.
Antioxidants (Basel) ; 11(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35204266

RESUMO

The rhizome of Anemarrhena asphodeloides Bunge (AA, family Liliaceae) is a famous and frequently used herbal drug in the traditional medicine of Northeast Asia, under vernacular name "zhimu". A. asphodeloides has been used as an anti-inflammatory, antipyretic, anti-platelet aggregation, anti-depressant, and anti-diabetic agent in traditional Chinese medicine. We examined the antioxidant, anti-acetylcholinesterase (AChE), and anti-α-glucosidase activities of various solvent extracts and the main bioactive compounds from the rhizome of A. asphodeloides. Acetone extract exhibited comparatively high antioxidant activities by 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, and ferric-reducing antioxidant power (FRAP) assays. A water extract exhibited relatively strong antioxidant activity by superoxide radical scavenging test. Furthermore, dichloromethane, chloroform, and n-hexane extracts showed significant anti-α-glucosidase activities. Finally, ethanol and dichloromethane extracts exhibited relatively strong AChE inhibitory activity. HPLC analysis was used to examine and compare various solvent extracts for their compositions of isolates. We isolated four major chemical constituents and analyzed their antioxidant, anti-α-glucosidase, and AChE inhibitory activities. The bioactivity assays showed that mangiferin displayed the most potential antioxidant activities via FRAP, ABTS, DPPH, and superoxide assays and also exhibited the most effective anti-AChE and anti-α-glucosidase activities among all the isolates. The present study suggests that A. asphodeloides and its active extracts and components are worth further investigation and might be expected to develop as a candidate for the treatment or prevention of oxidative stress-related diseases, AChE inhibition, and hyperglycemia.

9.
J Clin Pharmacol ; 62(2): 276-284, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34510471

RESUMO

This retrospective cohort study determines whether metformin monotherapy or combination therapies can decrease anemia risk in the progress of advanced chronic kidney disease for patients with type 2 diabetes mellitus. The data set was obtained from the National Health Insurance Research Database, containing 1 million randomly selected beneficiaries. After matching, 9303 pairs (1:1) of metformin users and nonusers were acquired. Every patient was individually recorded from 1997 to 2012 to identify anemia incidence (hemoglobin <9 gm/dL). Cox regression models were used to compute hazard ratios and 95% confidence intervals (CIs). There were 305 (0.7%) and 76 (0.8%) erythropoietin-stimulating agent cases in the metformin and non-metformin cohorts over a mean follow-up period of 6.8 and 5.6 years. After matching, the use of metformin decreased the risk of usage of erythropoietin-stimulating agents with an adjusted hazard ratio of 0.76 (95%CI, 0.45-1.29) for dosage of <357 g to 0.30 (95%CI, 0.17-0.56) for >1368 g. The combination of metformin and dipeptidyl peptidase-4 inhibitors decreased with a hazard ratio of 0.42 (95%CI, 0.18-0.99), compared to metformin alone. Metformin combined with dipeptidyl peptidase-4 inhibitors is superior to metformin monotherapy or non-metformin antidiabetic therapies for reducing the risk of anemia in the progress of advanced chronic kidney disease among patients with type 2 diabetes.


Assuntos
Anemia/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Hipoglicemiantes/efeitos adversos , Metformina/efeitos adversos , Insuficiência Renal Crônica/epidemiologia , Adulto , Fatores Etários , Idoso , Quimioterapia Combinada , Feminino , Hemoglobinas , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Metformina/uso terapêutico , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Fatores Sexuais , Adulto Jovem
10.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770952

RESUMO

Chloranthus oldhamii Solms (CO) is a folk medicine for treating infection and arthritis pain but its pharmacological activity and bioactive compounds remain mostly uncharacterized. In this study, the anti-inflammatory compounds of C. oldhamii were identified using an LPS-stimulated, NF-κB-responsive RAW 264.7 macrophage reporter line. Three diterpenoid compounds, 3α-hydroxy-ent-abieta-8,11,13-triene (CO-9), 3α, 7ß-dihydroxy-ent-abieta-8,11,13-triene (CO-10), and decandrin B (CO-15) were found to inhibit NF-κB activity at nontoxic concentrations. Moreover, CO-9 and CO-10 suppressed the expression of IL-6 and TNF-α in LPS-stimulated RAW 264.7 cells. The inhibitory effect of CO-9 on TNF-α and IL-6 expression was further demonstrated using LPS-treated bone marrow-derived macrophages. Furthermore, CO-9, CO-10, and CO-15 suppressed LPS-triggered COX-2 expression and downstream PGE2 production in RAW 264.7 cells. CO-9 and CO-10 also reduced LPS-triggered iNOS expression and nitrogen oxide production in RAW 264.7 cells. The anti-inflammatory mechanism of the most effective compound, CO-9, was further investigated. CO-9 attenuated LPS-induced NF-κB activation by reducing the phosphorylation of IKKα/ß (Ser176/180), IκBα (Ser32), and p65 (Ser534). Conversely, CO-9 did not affect the LPS-induced activation of MAPK signaling pathways. In summary, this study revealed new anti-inflammatory diterpenoid compounds from C. oldhamii and demonstrated that the IKK-mediated NK-κB pathway is the major target of these compounds.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Quinase I-kappa B/antagonistas & inibidores , Magnoliopsida/química , NF-kappa B/antagonistas & inibidores , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Diterpenos/química , Diterpenos/isolamento & purificação , Quinase I-kappa B/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , NF-kappa B/metabolismo , Células RAW 264.7
11.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830455

RESUMO

Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by the presence of the BCR-ABL oncogene. Therapeutic regimens with tyrosine kinase inhibitors (TKIs) specifically targeting BCR-ABL have greatly improved overall survival of CML. However, drug intolerance and related toxicity remain. Combined therapy is effective in reducing drug magnitude while increasing therapeutic efficacy and, thus, lowers undesired adverse side effects. The p38 MAPK activity is critically linked to the pathogenesis of a number of diseases including hematopoietic diseases; however, the role of each isozyme in CML and TKI-mediated effects is still elusive. In this study, we used specific gene knockdown to clearly demonstrate that the deficiency of p38α greatly enhanced the therapeutic efficacy in growth suppression and cytotoxicity of TKIs, first-generation imatinib, and second generation dasatinib by approximately 2.5-3.0-fold in BCR-ABL-positive CML-derived leukemia K562 and KMB5 cells. Knockdown of p38ß, which displays the most sequence similarity to p38α, exerted distinct and opposite effects on the TKI-mediated therapeutic efficacy. These results show the importance of isotype-specific intervention in enhancing the therapeutic efficacy of TKI. A highly specific p38α inhibitor, TAK715, also significantly enhanced the imatinib- and dasatinib-mediated therapeutic efficacy, supporting the feasibility of p38α deficiency in future clinic application. Taken together, our results demonstrated that p38α is a promising target for combined therapy with BCR-ABL-targeting tyrosine kinase inhibitors for future application to increase therapeutic efficacy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteína Quinase 14 Ativada por Mitógeno/genética , Terapia Combinada , Dasatinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Técnicas de Silenciamento de Genes , Terapia Genética , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/deficiência , Inibidores de Proteínas Quinases/farmacologia
12.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575922

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA binding protein involved in diverse cell processes; it is also a p53 coregulator that initiates apoptosis under DNA damage conditions. However, the upregulation of hnRNPK is correlated with cancer transformation, progression, and migration, whereas the regulatory role of hnRNPK in cancer malignancy remains unclear. We previously showed that arginine methylation of hnRNPK attenuated the apoptosis of U2OS osteosarcoma cells under DNA damage conditions, whereas the replacement of endogenous hnRNPK with a methylation-defective mutant inversely enhanced apoptosis. The present study further revealed that an RNA helicase, DDX3, whose C-terminus preferentially binds to the unmethylated hnRNPK and could promote such apoptotic enhancement. Moreover, C-terminus-truncated DDX3 induced significantly less apoptosis than full-length DDX3. Notably, we also identified a small molecule that docks at the ATP-binding site of DDX3, promotes the DDX3-hnRNPK interaction, and induces further apoptosis. Overall, we have shown that the arginine methylation of hnRNPK suppresses the apoptosis of U2OS cells via interfering with DDX3-hnRNPK interaction. On the other hand, DDX3-hnRNPK interaction with a proapoptotic role may serve as a target for promoting apoptosis in osteosarcoma cells.


Assuntos
Apoptose , Arginina/metabolismo , RNA Helicases DEAD-box/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Motivos de Aminoácidos , Apoptose/genética , Linhagem Celular Tumoral , RNA Helicases DEAD-box/química , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Metilação , Modelos Moleculares , Mutação , Osteossarcoma/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
13.
Mar Drugs ; 19(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34436247

RESUMO

Three new and uncommon chromone analogs, epiremisporine F (1), epiremisporine G (2), and epiremisporine H (3), were isolated from marine-origin Penicillium citrinum. Among the isolated compounds, compounds 2-3 remarkably suppressed fMLP-induced superoxide anion generation by human neutrophils, with IC50 values of 31.68 ± 2.53, and 33.52 ± 0.42 µM, respectively. Compound 3 exhibited cytotoxic activities against human colon carcinoma (HT-29) and non-small lung cancer cell (A549) with IC50 values of 21.17 ± 4.89 and 31.43 ± 3.01 µM, respectively, and Western blot assay confirmed that compound 3 obviously induced apoptosis of HT-29 cells, via Bcl-2, Bax, and caspase 3 signaling cascades.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Organismos Aquáticos/química , Cromonas/farmacologia , Penicillium/química , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Neutrófilos/efeitos dos fármacos
14.
Mar Drugs ; 19(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430124

RESUMO

Three new and rare chromone derivatives, epiremisporine C (1), epiremisporine D (2), and epiremisporine E (3), were isolated from marine-derived Penicillium citrinum, together with four known compounds, epiremisporine B (4), penicitrinone A (5), 8-hydroxy-1-methoxycarbonyl-6-methylxanthone (6), and isoconiochaetone C (7). Among the isolated compounds, compounds 2-5 significantly decreased fMLP-induced superoxide anion generation by human neutrophils, with IC50 values of 6.39 ± 0.40, 8.28 ± 0.29, 3.62 ± 0.61, and 2.67 ± 0.10 µM, respectively. Compounds 3 and 4 exhibited cytotoxic activities with IC50 values of 43.82 ± 6.33 and 32.29 ± 4.83 µM, respectively, against non-small lung cancer cell (A549), and Western blot assay confirmed that compounds 3 and 4 markedly induced apoptosis of A549 cells, through Bcl-2, Bax, and caspase 3 signaling cascades.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Cromonas/química , Cromonas/farmacologia , Penicillium/química , Células A549 , Adulto , Antibacterianos/farmacologia , Caspase 3/efeitos dos fármacos , Linhagem Celular Tumoral , Fermentação , Humanos , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Superóxidos/química , Adulto Jovem , Proteína X Associada a bcl-2/efeitos dos fármacos
15.
Molecules ; 25(21)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171671

RESUMO

Myristica fragrans is a well-known species for flavoring many food products and for formulation of perfume and medicated balm. It is also used to treat indigestion, stomach ulcers, liver disorders, and, as emmenagogue, diaphoretic, diuretic, nervine, and aphrodisiac. We examined antioxidant properties and bioactive compounds in various solvent extracts from the seeds of M. fragrans. Methanol, ethanol, and acetone extracts exhibited relatively strong antioxidant activities by 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), superoxide radical, and hydroxyl radical scavenging tests. Furthermore, methanol extracts also displayed significant anti-α-glucosidase activity. Examined and compared to the various solvent extracts for their chemical compositions using HPLC analysis, we isolated the ten higher content compounds and analyzed antioxidant and anti-α-glucosidase activities. Among the isolates, dehydrodiisoeugenol, malabaricone B and malabaricone C were main antioxidant components in seeds of M. fragrans. Malabaricone C exhibited stronger antioxidant capacities than others based on lower half inhibitory concentration (IC50) values in DPPH and ABTS radical scavenging assays, and it also showed significant inhibition of α-glucosidase. These results shown that methanol was found to be the most efficient solvent for extracting the active components from the seeds of M. fragrans, and this material is a potential good source of natural antioxidant and α-glucosidase inhibitor.


Assuntos
Antioxidantes/química , Inibidores de Glicosídeo Hidrolases/química , Myristica/química , Extratos Vegetais/química , Sementes/química , Acetona/química , Antioxidantes/farmacologia , Etanol/química , Eugenol/análogos & derivados , Eugenol/química , Eugenol/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Metanol/química , Resorcinóis/química , Resorcinóis/farmacologia , Solventes/química , alfa-Glucosidases/metabolismo
16.
Biochem Biophys Res Commun ; 533(3): 467-473, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977949

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by 2019 novel coronavirus (2019-nCoV) has been a crisis of global health, whereas the effective vaccines against 2019-nCoV are still under development. Alternatively, utilization of old drugs or available medicine that can suppress the viral activity or replication may provide an urgent solution to suppress the rapid spread of 2019-nCoV. Andrographolide is a highly abundant natural product of the medicinal plant, Andrographis paniculata, which has been clinically used for inflammatory diseases and anti-viral therapy. We herein demonstrate that both andrographolide and its fluorescent derivative, the nitrobenzoxadiazole-conjugated andrographolide (Andro- NBD), suppressed the main protease (Mpro) activities of 2019-nCoV and severe acute respiratory syndrome coronavirus (SARS-CoV). Moreover, Andro-NBD was shown to covalently link its fluorescence to these proteases. Further mass spectrometry (MS) analysis suggests that andrographolide formed a covalent bond with the active site Cys145 of either 2019-nCoV Mpro or SARS-CoV Mpro. Consistently, molecular modeling analysis supported the docking of andrographolide within the catalytic pockets of both viral Mpros. Considering that andrographolide is used in clinical practice with acceptable safety and its diverse pharmacological activities that could be beneficial for attenuating COVID-19 symptoms, extensive investigation of andrographolide on the suppression of 2019-nCoV as well as its application in COVID-19 therapy is suggested.


Assuntos
Cisteína Endopeptidases/metabolismo , Diterpenos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/enzimologia , Domínio Catalítico , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Diterpenos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Simulação de Acoplamento Molecular , Conformação Proteica , Multimerização Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , SARS-CoV-2 , Proteínas não Estruturais Virais/química
17.
Sci Rep ; 10(1): 8422, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439945

RESUMO

Toll-like receptors (TLRs) play crucial roles in host immune defenses. Recently, TLR-mediated autophagy is reported to promote immune responses via increasing antigen processing and presentation in antigen presenting cells. The present study examined whether the synthetic TLR4 activator (CCL-34) could induce autophagy to promote innate and adaptive immunity. In addition, the potential of CCL-34 as an immune adjuvant in vivo was also investigated. Our data using RAW264.7 cells and bone marrow-derived macrophages showed that CCL-34 induced autophagy through a TLR4-NF-κB pathway. The autophagy-related molecules (Nrf2, p62 and Beclin 1) were activated in RAW264.7 cells and bone marrow-derived macrophages under CCL-34 treatment. CCL-34-stimulated macrophages exhibited significant antigen-processing activity and induced the proliferation of antigen-specific CD4+T cells as well as the production of activated T cell-related cytokines, IL-2 and IFN-γ. Furthermore, CCL-34 immunization in mice induced infiltration of monocytes in the peritoneal cavity and elevation of antigen-specific IgG in the serum. CCL-34 treatment in vivo did not cause toxicity based on serum biochemical profiles. Notably, the antigen-specific responses induced by CCL-34 were attenuated by the autophagy inhibitor, 3-methyladenine. In summary, we demonstrated CCL-34 can induce autophagy to promote antigen-specific immune responses and act as an efficient adjuvant.


Assuntos
Adjuvantes Imunológicos/farmacologia , Autofagia/imunologia , Glicolipídeos/farmacologia , Imunogenicidade da Vacina/imunologia , Serina/análogos & derivados , Receptor 4 Toll-Like/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Proteína Beclina-1/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Imunoglobulina G/sangue , Interferon gama/metabolismo , Interleucina-2/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Fator 2 Relacionado a NF-E2/metabolismo , Células RAW 264.7 , Serina/farmacologia , Vacinas/imunologia
18.
Sci Rep ; 9(1): 7611, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110205

RESUMO

We have previously identified a novel Aurora-A-mediated Serine 379 (S379) phosphorylation of a poly(C)-binding protein, hnRNPK, the overexpression of which is frequently observed in various cancers. It is known that the oncogenic Aurora-A kinase promotes the malignancy of cancer cells. This study aims to investigate the unexplored functions of hnRNPK S379 phosphorylation using MDA-MB-231 cells, a triple negative breast cancer cell that has amplification of the Aurora-A kinase gene. Accordingly, we established two cell lines in which the endogenous hnRNPK was replaced with either S379D or S379A hnRNPK respectively. Notably, we found that a phosphorylation-mimic S379D mutant of hnRNPK suppressed cell migration and, conversely, a phosphorylation-defective S379A mutant promoted migration. Moreover, Twist was downregulated upon hnRNPK S379 phosphorylation, whereas ß-catenin and MMP12 were increased when there was loss of hnRNPK S379 phosphorylation in MDA-MB-231 cells. Furthermore, S379A hnRNPK increases stability of ß-catenin in MDA-MB-231 cells. In conclusion, our results suggest that hnRNPK S379 phosphorylation regulates migration via the EMT signaling pathway.


Assuntos
Movimento Celular/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Fosforilação/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Serina/genética , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/genética , beta Catenina/genética
19.
Biochem Pharmacol ; 163: 308-320, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30822403

RESUMO

Chronic myelogenous leukemia (CML) is clinically treated with imatinib, which inhibits the kinase activity of the Bcr-Abl oncoprotein. However, imatinib resistance remains a common clinical issue. Andrographolide, the major compound of the medicinal plant Andrographis paniculata, was reported to exhibit anticancer activity. In this study, we explored the therapeutic potential of andrographolide and its derivative, NCTU-322, against both imatinib-sensitive and imatinib-resistant human CML cell lines. Both andrographolide and NCTU-322 downregulated the Bcr-Abl oncoprotein in imatinib-resistant CML cells through an Hsp90-dependent mechanism similar to that observed in imatinib-sensitive CML cells. In addition, NCTU-322 had stronger effects than andrographolide on downregulation of Bcr-Abl oncoprotein, induction of Hsp90 cleavage and cytotoxicity of CML cells. Notably, andrographolide and NCTU-322 could induce differentiation, mitotic arrest and apoptosis of both imatinib-sensitive and imatinib-resistant CML cells. Finally, the anticancer activity of NCTU-322 against imatinib-resistant CML cells was demonstrated in vivo. In summary, our data demonstrated that andrographolide and NCTU-322 inhibit Bcr-abl function via a mechanism different from that of imatinib, and they induced multiple anticancer effects in both imatinib-sensitive and resistant CML cells. Our findings demonstrate that andrographolide and NCTU-322 are potential therapeutic agents again CML.


Assuntos
Antineoplásicos/farmacologia , Diterpenos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes abl/fisiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/química , Resistencia a Medicamentos Antineoplásicos , Genes abl/genética , Humanos , Mesilato de Imatinib/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Estrutura Molecular
20.
Molecules ; 23(12)2018 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-30513815

RESUMO

Flavonoids, widely present in medicinal plants and fruits, are known to exhibit multiple pharmacological activities. In this study, we isolated a flavonoid compound, pilloin, from Aquilaria sinensis and investigated its anti-inflammatory activity in bacterial lipopolysaccharide-induced RAW 264.7 macrophages and septic mice. Pilloin inhibited NF-κB activation and reduced the phosphorylation of IκB in LPS-stimulated macrophages. Moreover, pilloin significantly suppressed the production of pro-inflammatory molecules, such as TNF-α, IL-6, COX-2 and iNOS, in LPS-treated RAW 264.7 macrophages. Additionally, pilloin suppressed LPS-induced morphological alterations, phagocytic activity and ROS elevation in RAW 264.7 macrophages. The mitogen-activated protein kinase-mediated signalling pathways (including JNK, ERK, p38) were also inhibited by pilloin. Furthermore, pilloin reduced serum levels of TNF-α (from 123.3 ± 7 to 46.6 ± 5.4 ng/mL) and IL-6 levels (from 1.4 ± 0.1 to 0.7 ± 0.1 ng/mL) in multiple organs of LPS-induced septic mice (liver: from 71.8 ± 3.2 to 36.7 ± 4.3; lung: from 118.6 ± 10.6 to 75.8 ± 11.9; spleen: from 185.9 ± 23.4 to 109.6 ± 18.4; kidney: from 160.3 ± 11.8 to 75 ± 10.8 pg/mL). In summary, our results demonstrate the anti-inflammatory potential of pilloin and reveal its underlying molecular mechanism of action.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Thymelaeaceae/química , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Flavonoides/química , Flavonoides/isolamento & purificação , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Sepse/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA