Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(48): e2206815119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417433

RESUMO

Spliceosome activation is the process of creating the catalytic site for RNA splicing and occurs de novo on each intron following spliceosome assembly. Dozens of factors bind to or are released from the activating spliceosome including the Lsm2-8 heteroheptameric ring that binds the U6 small nuclear RNA 3'-end. Lsm2-8 must be released to permit active site stabilization by the Prp19-containing complex (NineTeen Complex, NTC); however, little is known about the temporal order of events and dynamic interactions that lead up to and follow Lsm2-8 release. We have used colocalization single molecule spectroscopy (CoSMoS) to visualize Lsm2-8 dynamics during activation of Saccharomyces cerevisiae spliceosomes in vitro. Lsm2-8 is recruited as a component of the tri-snRNP and is released after integration of the Prp19-containing complex (NTC). Despite Lsm2-8 and the NTC being mutually exclusive in existing cryo-EM structures of yeast B complex spliceosomes, we identify a transient intermediate containing both ([Formula: see text]) and provide a kinetic framework for its formation and transformation during activation. Prior to [Formula: see text] assembly, the NTC rapidly and reversibly samples the spliceosome suggesting a mechanism for preventing NTC sequestration by defective spliceosomes that fail to properly activate. In complementary ensemble assays, we show that a base-pairing-dependent ternary complex can form between Lsm2-8 and U2 and U6 helix II RNAs. We propose that this interaction may play a role in formation of transient spliceosome intermediates formed during activation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Spliceossomos , Spliceossomos/genética , Imagem Individual de Molécula , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopia de Fluorescência , Fatores de Processamento de RNA/metabolismo
2.
Org Lett ; 23(22): 8733-8737, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34709830

RESUMO

Various cis-ß-phosphinolactams are synthesized stereoselectively for the first time from imines and diazo(aryl)methyl(diaryl)phosphine oxides under microwave irradiation. Diazo(aryl)methyl(diaryl)phosphine oxides first undergo the Wolf rearrangement to generate phosphenes. Imines nucleophilically attack the phosphenes followed by an intramolecular nucleophilic addition via less steric transition states to give final cis-ß-phosphinolactams. C-Styrylimines generally give rise to ß-phosphinolactams in higher yields than C-arylimines. The stereoselectivity and proposed mechanism are rationalized by DFT theoretical calculation.

3.
RNA ; 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547186

RESUMO

Genetic, biochemical, and structural studies have elucidated the molecular basis for spliceosome catalysis. Splicing is RNA catalyzed and the essential snRNA and protein factors are well-conserved. However, little is known about how non-essential components of the spliceosome contribute to the reaction and modulate the activities of the fundamental core machinery. Ecm2 is a non-essential yeast splicing factor that is a member of the Prp19-related complex of proteins. Cryo-electron microscopy (cryo-EM) structures have revealed that Ecm2 binds the U6 snRNA and is entangled with Cwc2, a factor previously found to promote a catalytically active conformation of the spliceosome. These structures also indicate that Ecm2 and the U2 snRNA likely form a transient interaction during 5' splice site (SS) cleavage. We have characterized genetic interactions between ECM2 and alleles of splicing factors that alter the catalytic steps in splicing. In addition, we have studied how loss of ECM2 impacts splicing of pre-mRNAs containing non-consensus or competing SS. Our results show that ECM2 functions during the catalytic stages of splicing. Our data are consistent with Ecm2 facilitating the formation and stabilization of the 1st-step catalytic site, promoting 2nd-step catalysis, and permiting alternate 5' SS usage. We propose that Cwc2 and Ecm2 can each fine-tune the spliceosome active site in unique ways. Their interaction network may act as a conduit through which splicing of certain pre-mRNAs, such as those containing weak or alternate splice sites, can be regulated.

4.
Org Biomol Chem ; 18(46): 9526-9537, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33191424

RESUMO

The reaction of diazo(aryl)methyl(diaryl)phosphine oxides with aldehydes and ketones generates benzo-δ-phosphinolactones in low to good yields with 1,1-diarylalk-1-enes as byproducts under microwave irradiation. Diazo(aryl)methyl(diaryl)phosphine oxides first undergo a Wolff rearrangement to form diaryl(aryl)phosphenes, which further react with aldehydes and ketones to afford benzo-δ-phosphinolactones and ß-phosphinolactones. The latter are unstable under heating and fragment into the corresponding 1,1-diarylalk-1-enes and arylphosphine dioxides under reaction conditions. The arylphosphine dioxides become arylphosphonic acids during workup. The periselectivity in the annulation shows that the reaction of diaryl(aryl)phosphenes with most aldehydes and ketones favors phosphene phenyl participation in (4 + 2) annulation over (2 + 2) annulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA