Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 2): 127887, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935288

RESUMO

A cleaner and safer environment is one of the most important requirements in the future. It has become increasingly urgent and important to fabricate novel environmentally-friendly materials to remove various hazardous pollutants. Compared with traditional materials, chitosan is a more environmentally friendly material due to its abundance, biocompatibility, biodegradability, film-forming ability and hydrophilicity. As an abundant of -NH2 and -OH groups on chitosan molecular chain could chelate with all kinds of metal ions efficiently, chitosan-based materials hold great potential as a versatile supporting matrix for metal oxide nanomaterials (MONMs) (TiO2, ZnO, SnO2, Fe3O4, etc.). Recently, many chitosan/metal oxide nanomaterials (CS/MONMs) have been reported as adsorbents, photocatalysts, heterogeneous Fenton-like agents, and sensors for potential and practical applications in environmental remediation and monitoring. This review analyzed and summarized the recent advances in CS/MONMs composites, which will provide plentiful and meaningful information on the preparation and application of CS/MONMs composites for wastewater treatment and help researchers to better understand the potential of CS/MONMs composites for environmental remediation and monitoring. In addition, the challenges of CS/MONM have been proposed.


Assuntos
Quitosana , Poluentes Ambientais , Recuperação e Remediação Ambiental , Nanocompostos , Poluentes Químicos da Água , Óxidos , Adsorção
2.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687063

RESUMO

As a biodegradable and renewable material, polylactic acid is considered a major environmentally friendly alternative to petrochemical plastics. Microbial fermentation is the traditional method for lactic acid production, but it is still too expensive to compete with the petrochemical industry. Agro-industrial wastes are generated from the food and agricultural industries and agricultural practices. The utilization of agro-industrial wastes is an important way to reduce costs, save energy and achieve sustainable development. The present study aimed to develop a method for the valorization of Zizania latifolia waste and cane molasses as carbon sources for L-lactic acid fermentation using Rhizopus oryzae LA-UN-1. The results showed that xylose derived from the acid hydrolysis of Z. latifolia waste was beneficial for cell growth, while glucose from the acid hydrolysis of Z. latifolia waste and mixed sugars (glucose and fructose) from the acid hydrolysis of cane molasses were suitable for the accumulation of lactic acid. Thus, a three-stage carbon source utilization strategy was developed, which markedly improved lactic acid production and productivity, respectively reaching 129.47 g/L and 1.51 g/L·h after 86 h of fermentation. This work demonstrates that inexpensive Z. latifolia waste and cane molasses can be suitable carbon sources for lactic acid production, offering an efficient utilization strategy for agro-industrial wastes.


Assuntos
Melaço , Rhizopus oryzae , Bengala , Resíduos Industriais , Ácido Láctico , Carbono , Glucose
3.
Environ Sci Pollut Res Int ; 30(15): 44985-44998, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36701055

RESUMO

Magnetic γ-Fe2O3/Al3+@chitosan-derived biochar (m-Fe2O3/Al3+@CB) was prepared by introducing magnetic maghemite (γ-Fe2O3) nanoparticles and aluminum sulfate [Al2(SO4)3] into chitosan-derived biochar (CB) obtained at low pyrolysis temperatures. m-Fe2O3/Al3+@CB was used to remove typical anionic azo dye (Congo red, CR). Effects of initial CR concentration, contact time, initial pH value, background electrolytes, and temperature on CR adsorption by m-Fe2O3/Al3+@CB were studied. Compared with magnetic chitosan-derived biochar (m-Fe2O3@CB), m-Fe2O3/Al3+@CB exhibited excellent performance for a wider range of pH values (pH 1-7) and in the presence of background electrolyte. The introduction of Al3+ is an effective method for improving the properties of magnetic chitosan-derived biochar. High CR adsorption capacity (636.94 mg g-1) of m-Fe2O3/Al3+@CB could result from collaborative effect of flocculation/coagulation and electrostatic attraction. These results demonstrated that m-Fe2O3/Al3+@CB is a potential adsorbent for effective removal of organic dyes from aqueous solution due to its high adsorption capacity and convenient magnetic recovery and stronger anti-interference ability against coexisting anions in wastewater.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Temperatura , Compostos Azo , Pirólise , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Fenômenos Magnéticos , Cinética
4.
Int J Biol Macromol ; 227: 1234-1244, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464188

RESUMO

The water solubility in acid solution, relative low adsorption capacities and unsatisfactory separation performance limit application of traditional chitosan-based adsorbents in wastewater treatment. To break the limitation, a hydrophilic magnetic Fe3O4 embedded chitosan-crosslinked-polyacrylamide composites (abbreviated as m-CS-c-PAM) were prepared by a two-step method. The m-CS-c-PAM composites were systematically characterized using SEM, XRD, FTIR, VSM, TGA and BET. Sunset yellow (SY) was selected as model food dye to investigate adsorption kinetics and thermodynamic parameters of food dye adsorption onto m-CS-c-PAM. Compared with magnetic Fe3O4/chitosan, m-CS-c-PAM can adapt to a wider range of pH (2-10) and resist the presence of inorganic salts. m-CS-c-PAM was proved to have high adsorption capacity (359.71 mg g-1) for SY dye at 298 K, much higher than magnetic Fe3O4/chitosan and many reported adsorbents. Moreover, m-CS-c-PAM could be rapidly and efficiently separated from treated solution within 15 s by an external magnet and regenerated by NaOH solution. With its excellent adsorption capacity, pH-independent adsorption capability for food dye, easy and convenient separation ability, satisfactory reusability, m-CS-c-PAM can be a promising material for food wastewater treatment.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Quitosana/química , Magnetismo , Cinética , Fenômenos Magnéticos , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
5.
Appl Biochem Biotechnol ; 195(1): 623-638, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36114924

RESUMO

Aurantiochytrium is a promising source of docosahexaenoic acid (DHA) and carotenoids, but their synthesis is influenced by environmental stress factors. In this study, the effect of different light intensities on the fermentation of DHA oil and carotenoids using Aurantiochytrium sp. TZ209 was investigated. The results showed that dark culture and low light intensity conditions did not affect the normal growth of cells, but were not conducive to the accumulation of carotenoids. High light intensity promoted the synthesis of DHA and carotenoids, but caused cell damage, resulting in a decrease of oil yield. To solve this issue, a light intensity gradient strategy was developed, which markedly improved the DHA and carotenoid content without reducing the oil yield. This strategy produced 30.16 g/L of microalgal oil with 15.11 g/L DHA, 221 µg/g astaxanthin, and 386 µg/g ß-carotene. This work demonstrates that strain TZ209 is a promising DHA producer and provides an efficient strategy for the co-production of DHA oil together with carotenoids.


Assuntos
Carotenoides , Estramenópilas , Ácidos Docosa-Hexaenoicos , Fermentação , beta Caroteno
6.
Int J Biol Macromol ; 174: 52-60, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33460656

RESUMO

Colloidal CdS sensitized nano-ZnO/chitosan (CdS@n-ZnO/CS) hydrogel was prepared and characterized extensively by XRD, SEM-EDS, TEM, UV-Vis DRS, FT-IR and TGA. The photocatalytic activity of CdS@n-ZnO/CS was evaluated with the photodegradation of congo red (CR) as an organic pollutant under solar light irradiation. The influences of initial dye concentration, catalyst dosage, recycling runs, and radical scavenger on decolorization of CR by CdS@n-ZnO/CS were investigated. 95% of CR was removed in just 1 min for 5.0 mg L-1 and 94.34% of CR was removed in 30 min for 100 mg L-1. CdS@n-ZnO/CS exhibited an excellent and ultra-fast performance toward CR removal under solar light due to the synergistic effect of adsorption by chitosan and photocatalysis by ZnO and CdS in CdS@n-ZnO/CS hydrogel. Radical trapping control experiments indicated that h+ and O2- played the major role for CR decolorization. The high performance of CdS@n-ZnO/CS hydrogel was also demonstrated under natural solar light irradiation, suggesting that CdS@n-ZnO/CS hydrogel could be used in practical wastewater treatment.


Assuntos
Compostos de Cádmio/química , Vermelho Congo/isolamento & purificação , Prata/química , Purificação da Água/métodos , Adsorção , Cádmio/química , Catálise , China , Quitosana/química , Hidrogéis/química , Cinética , Luz , Nanopartículas Metálicas/química , Nanocompostos , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Luz Solar , Óxido de Zinco/química
7.
Carbohydr Polym ; 252: 117158, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183609

RESUMO

Magnetic NiFe2O4 nanoparticles and multi-walled carbon nanotubes functionalized cellulose composite (m-NiFe2O4/MWCNTs@cellulose) as a magnetic bioadsorbent was prepared and used for effectively removing Congo Red (CR) from aqueous solution. The chemical and physical properties of the prepared m-NiFe2O4/MWCNTs@cellulose were characterized by XRD, TGA, FT-IR, VSM, SEM and TEM. Batch experiments were carried out to investigate the adsorption capacity and mechanisms. Effects of different adsorption parameters such as initial CR concentration, adsorbent dosage and temperature were studied. Results demonstrated that m-NiFe2O4/MWCNTs@cellulose had high adsorption capacity for CR from aqueous solution. The obtained experimental data fitted well with the pseudo-second-order equation and followed the Langmuir isotherm model with a maximum adsorption capacity of 95.70 mg g-1 for CR. The m-NiFe2O4/MWCNTs@cellulose with rapid magnetic separation and high adsorption capacity can be a promising and recyclable engineering biomaterials for purification and treatment of practical wastewater.


Assuntos
Celulose/química , Vermelho Congo/química , Nanopartículas de Magnetita/química , Nanotubos de Carbono/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Cinética , Águas Residuárias/química
8.
Bioresour Technol ; 218: 410-7, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27393831

RESUMO

In this study, lactic acid fermentation by Rhizopus oryzae was investigated using the two different fermentation strategies of one-step fermentation (OSF) and conventional fermentation (CF). Compared to CF, OSF reduced the demurrage of the production process and increased the production of lactic acid. However, the qp was significantly lower than during CF. Based on analysis of µ, qs and qp, a novel modified OSF strategy was proposed. This strategy aimed to achieve a high final concentration of lactic acid, and a high qp by R. oryzae. In this strategy, the maximum lactic acid concentration and productivity of the lactic acid production stage reached 158g/l and 5.45g/(lh), which were 177% and 366% higher, respectively, than the best results from CF. Importantly, the qp and yield did not decrease. This strategy is a convenient and economical method for l-lactic acid fermentation by R. oryzae.


Assuntos
Fermentação , Ácido Láctico/biossíntese , Rhizopus/metabolismo , Reatores Biológicos , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Microbiologia Industrial , Cinética , Nitrogênio/química , Peptonas/química , Temperatura
9.
Appl Biochem Biotechnol ; 174(6): 2019-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25163881

RESUMO

The effects of pellet morphology, diameter, density, and interior structure on L-lactic acid fermentation by Rhizopus oryzae were characterized for different inoculum sizes and concentrations of peptone and CaCO3. Inoculum size was the most important factor determining pellet formation and diameter. The diameter decreased with increasing inoculum size, and larger pellets were observed for lower inoculum sizes. Peptone concentration had the greatest effect on pellet density, which increased with increasing peptone concentration. L-lactic acid production depended heavily on pellet density but not on pellet diameter. Low-density pellets formed easily under conditions of low peptone concentration and often had a relatively hollow structure, with a thin condensed layer surrounding the pellet and an extraordinarily loose biomass or hollow center. As expected, this structure greatly decreased production. The production of L-lactic acid increased until the density reached a certain level (50-60 kg/m(3)), in which the compact part was distributed homogeneously in the thick outer layer of the pellet and loose in the central layer. Homogeneously structured, denser pellets had limited mass transfer, causing a lower overall turnover rate. However, the interior structure remained nearly constant throughout all fermentation phases for pellets with the same density. CaCO3 concentration only had a slight influence on pellet diameter and density, probably because it increases spore germination and filamentous hypha extension. This work also provides a new analysis method to quantify the interior structure of pellets, thus giving insight into pellet structure and its relationship with productivity.


Assuntos
Técnicas de Cultura/métodos , Fermentação , Ácido Láctico/biossíntese , Rhizopus/crescimento & desenvolvimento , Rhizopus/metabolismo , Biomassa , Carbonato de Cálcio/farmacologia , Relação Dose-Resposta a Droga , Fermentação/efeitos dos fármacos , Peptonas/farmacologia , Rhizopus/efeitos dos fármacos , Temperatura
10.
Appl Biochem Biotechnol ; 162(4): 1031-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19936636

RESUMO

Batch fermentative production of fumaric acid by Rhizopus oryzae ME-F12 was investigated in a 7-l stirred tank fermentor under different dissolved oxygen (DO) concentrations. High fumaric acid yield on glucose (0.56 g/g) was achieved under high DO concentration (80%), but the glucose consumption rate and fumaric acid productivity were rather low (0.91 and 0.51 g/l/h). Fumaric acid productivity was enhanced under low DO concentration (30%), but the fuamric acid yield on glucose decreased to 0.52 g/g. In order to achieve the high fumaric acid yield and productivity simultaneously, a two-stage dissolved oxygen control strategy was proposed, in which the DO concentration was controlled at 80% in the first 18 h and then switched to 30%. This was experimentally proven to be successful. Relatively high fumaric acid production (56.2 g/l), high fumaric acid yield on glucose (0.54 g/g), and high glucose consumption rate (1.3 g/l/h) were achieved by applying this strategy. The productivity (0.7 g/l/h) was improved by 37%, 21%, and 9%, respectively, compared with fermentations in which DO concentrations were kept constant at 80%, 60%, and 30%.


Assuntos
Técnicas de Cultura/métodos , Fumaratos/metabolismo , Oxigênio/metabolismo , Rhizopus/metabolismo , Reatores Biológicos/microbiologia , Fermentação , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA