Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Hum Brain Mapp ; 45(7): e26694, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727014

RESUMO

Schizophrenia (SZ) is a debilitating mental illness characterized by adolescence or early adulthood onset of psychosis, positive and negative symptoms, as well as cognitive impairments. Despite a plethora of studies leveraging functional connectivity (FC) from functional magnetic resonance imaging (fMRI) to predict symptoms and cognitive impairments of SZ, the findings have exhibited great heterogeneity. We aimed to identify congruous and replicable connectivity patterns capable of predicting positive and negative symptoms as well as cognitive impairments in SZ. Predictable functional connections (FCs) were identified by employing an individualized prediction model, whose replicability was further evaluated across three independent cohorts (BSNIP, SZ = 174; COBRE, SZ = 100; FBIRN, SZ = 161). Across cohorts, we observed that altered FCs in frontal-temporal-cingulate-thalamic network were replicable in prediction of positive symptoms, while sensorimotor network was predictive of negative symptoms. Temporal-parahippocampal network was consistently identified to be associated with reduced cognitive function. These replicable 23 FCs effectively distinguished SZ from healthy controls (HC) across three cohorts (82.7%, 90.2%, and 86.1%). Furthermore, models built using these replicable FCs showed comparable accuracies to those built using the whole-brain features in predicting symptoms/cognition of SZ across the three cohorts (r = .17-.33, p < .05). Overall, our findings provide new insights into the neural underpinnings of SZ symptoms/cognition and offer potential targets for further research and possible clinical interventions.


Assuntos
Disfunção Cognitiva , Conectoma , Imageamento por Ressonância Magnética , Rede Nervosa , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Masculino , Adulto , Feminino , Conectoma/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Estudos de Coortes , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Adulto Jovem , Pessoa de Meia-Idade
2.
Neuroimage ; 292: 120617, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636639

RESUMO

A primary challenge to the data-driven analysis is the balance between poor generalizability of population-based research and characterizing more subject-, study- and population-specific variability. We previously introduced a fully automated spatially constrained independent component analysis (ICA) framework called NeuroMark and its functional MRI (fMRI) template. NeuroMark has been successfully applied in numerous studies, identifying brain markers reproducible across datasets and disorders. The first NeuroMark template was constructed based on young adult cohorts. We recently expanded on this initiative by creating a standardized normative multi-spatial-scale functional template using over 100,000 subjects, aiming to improve generalizability and comparability across studies involving diverse cohorts. While a unified template across the lifespan is desirable, a comprehensive investigation of the similarities and differences between components from different age populations might help systematically transform our understanding of the human brain by revealing the most well-replicated and variable network features throughout the lifespan. In this work, we introduced two significant expansions of NeuroMark templates first by generating replicable fMRI templates for infants, adolescents, and aging cohorts, and second by incorporating structural MRI (sMRI) and diffusion MRI (dMRI) modalities. Specifically, we built spatiotemporal fMRI templates based on 6,000 resting-state scans from four datasets. This is the first attempt to create robust ICA templates covering dynamic brain development across the lifespan. For the sMRI and dMRI data, we used two large publicly available datasets including more than 30,000 scans to build reliable templates. We employed a spatial similarity analysis to identify replicable templates and investigate the degree to which unique and similar patterns are reflective in different age populations. Our results suggest remarkably high similarity of the resulting adapted components, even across extreme age differences. With the new templates, the NeuroMark framework allows us to perform age-specific adaptations and to capture features adaptable to each modality, therefore facilitating biomarker identification across brain disorders. In sum, the present work demonstrates the generalizability of NeuroMark templates and suggests the potential of new templates to boost accuracy in mental health research and advance our understanding of lifespan and cross-modal alterations.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Adulto , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Encéfalo/diagnóstico por imagem , Adolescente , Adulto Jovem , Masculino , Idoso , Feminino , Pessoa de Meia-Idade , Lactente , Criança , Envelhecimento/fisiologia , Pré-Escolar , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Idoso de 80 Anos ou mais , Neuroimagem/métodos , Neuroimagem/normas , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/normas
3.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645216

RESUMO

Functional and structural magnetic resonance imaging (fMRI and sMRI) are complementary approaches that can be used to study longitudinal brain changes in adolescents. Each individual modality offers distinct insights into the brain. Each individual modality may overlook crucial aspects of brain analysis. By combining them, we can uncover hidden brain connections and gain a more comprehensive understanding. In previous work, we identified multivariate patterns of change in whole-brain function during adolescence. In this work, we focus on linking functional change patterns (FCPs) to brain structure. We introduce two approaches and applied them to data from the Adolescent Brain and Cognitive Development (ABCD) dataset. First, we evaluate voxelwise sMRI-FCP coupling to identify structural patterns linked to our previously identified FCPs. Our approach revealed multiple interesting patterns in functional network connectivity (FNC) and gray matter volume (GMV) data that were linked to subject level variation. FCP components 2 and 4 exhibit extensive associations between their loadings and voxel-wise GMV data. Secondly, we leveraged a symmetric multimodal fusion technique called multiset canonical correlation analysis (mCCA) + joint independent component analysis (jICA). Using this approach, we identify structured FCPs such as one showing increased connectivity between visual and sensorimotor domains and decreased connectivity between sensorimotor and cognitive control domains, linked to structural change patterns (SCPs) including alterations in the bilateral sensorimotor cortex. Interestingly, females exhibit stronger coupling between brain functional and structural changes than males, highlighting sex-related differences. The combined results from both asymmetric and symmetric multimodal fusion methods underscore the intricate sex-specific nuances in neural dynamics. By utilizing two complementary multimodal approaches, our study enhances our understanding of the dynamic nature of brain connectivity and structure during the adolescent period, shedding light on the nuanced processes underlying adolescent brain development.

4.
Res Sq ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496567

RESUMO

This study examines the association between brain dynamic functional network connectivity (dFNC) and current/future posttraumatic stress (PTS) symptom severity, and the impact of sex on this relationship. By analyzing 275 participants' dFNC data obtained ~2 weeks after trauma exposure, we noted that brain dynamics of an inter-network brain state link negatively with current (r=-0.179, pcorrected= 0.021) and future (r=-0.166, pcorrected= 0.029) PTS symptom severity. Also, dynamics of an intra-network brain state correlated with future symptom intensity (r = 0.192, pcorrected = 0.021). We additionally observed that the association between the network dynamics of the inter-network brain state with symptom severity is more pronounced in females (r=-0.244, pcorrected = 0.014). Our findings highlight a potential link between brain network dynamics in the aftermath of trauma with current and future PTSD outcomes, with a stronger protective effect of inter-network brain states against symptom severity in females, underscoring the importance of sex differences.

5.
Neuroimage Clin ; 41: 103584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422833

RESUMO

Psychosis (including symptoms of delusions, hallucinations, and disorganized conduct/speech) is a main feature of schizophrenia and is frequently present in other major psychiatric illnesses. Studies in individuals with first-episode (FEP) and early psychosis (EP) have the potential to interpret aberrant connectivity associated with psychosis during a period with minimal influence from medication and other confounds. The current study uses a data-driven whole-brain approach to examine patterns of aberrant functional network connectivity (FNC) in a multi-site dataset comprising resting-state functional magnetic resonance images (rs-fMRI) from 117 individuals with FEP or EP and 130 individuals without a psychiatric disorder, as controls. Accounting for age, sex, race, head motion, and multiple imaging sites, differences in FNC were identified between psychosis and control participants in cortical (namely the inferior frontal gyrus, superior medial frontal gyrus, postcentral gyrus, supplementary motor area, posterior cingulate cortex, and superior and middle temporal gyri), subcortical (the caudate, thalamus, subthalamus, and hippocampus), and cerebellar regions. The prominent pattern of reduced cerebellar connectivity in psychosis is especially noteworthy, as most studies focus on cortical and subcortical regions, neglecting the cerebellum. The dysconnectivity reported here may indicate disruptions in cortical-subcortical-cerebellar circuitry involved in rudimentary cognitive functions which may serve as reliable correlates of psychosis.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos Psicóticos/patologia , Encéfalo , Esquizofrenia/diagnóstico , Cerebelo , Mapeamento Encefálico/métodos
6.
Brain Connect ; 14(2): 130-140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308475

RESUMO

Aim: To develop an approach to evaluate multiple overlapping brain functional change patterns (FCPs) in functional network connectivity (FNC) and apply to study developmental changes in brain function. Introduction: FNC, the network analog of functional connectivity (FC), is commonly used to capture the intrinsic functional relationships among brain networks. Ongoing research on longitudinal changes of intrinsic FC across whole-brain functional networks has proven useful for characterizing age-related changes, but to date, there has been little focus on capturing multivariate patterns of FNC change with brain development. Methods: In this article, we introduce a novel approach to evaluate multiple overlapping FCPs by utilizing FNC matrices. We computed FNC matrices from the large-scale Adolescent Brain Cognitive Development data using fully automated spatially constrained independent component analysis (ICA). We next evaluated changes in these patterns for a 2-year period using a second-level ICA on the FNC change maps. Results: Our proposed approach reveals several highly structured (modular) FCPs and significant results including strong brain FC between visual and sensorimotor domains that increase with age. We also find several FCPs that are associated with longitudinal changes of psychiatric problems, cognition, and age in the developing brain. Interestingly, FCP cross-covariation, reflecting coupling between maximally independent FCPs, also shows significant differences between upper and lower quartile loadings for longitudinal changes in age, psychiatric problems, and cognition scores, as well as baseline age in the developing brain. FCP patterns and results were also found to be highly reliable based on analysis of data collected in a separate scan session. Conclusion: In sum, our results show evidence of consistent multivariate patterns of functional change in emerging adolescents and the proposed approach provides a useful and general tool to evaluate covarying patterns of whole-brain functional changes in longitudinal data. Impact statement In this article, we introduce a novel approach utilizing functional network connectivity (FNC) matrices to estimate multiple overlapping brain functional change patterns (FCPs). The findings demonstrate several well-structured FCPs that exhibit significant changes for a 2-year period, particularly in the functional connectivity between the visual and sensorimotor domains. In addition, we discover several FCPs that are associated with psychopathology, cognition, and age. Finally, our proposed approach for studying age-related FCPs represents a pioneering method that provides a valuable tool for assessing interconnected patterns of whole-brain functional changes in longitudinal data and may be useful to study change over time with applicability to many other areas, including the study of longitudinal changes within diagnostic groups, treatment effects, aging effects, and more.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adolescente , Humanos , Imageamento por Ressonância Magnética/métodos , Cognição , Envelhecimento , Mapeamento Encefálico
7.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339531

RESUMO

Network neuroscience, a multidisciplinary field merging insights from neuroscience and network theory, offers a profound understanding of neural network intricacies. However, the impact of varying node sizes on computed graph metrics in neuroimaging data remains underexplored. This study addresses this gap by adopting a data-driven methodology to delineate functional nodes and assess their influence on graph metrics. Using the Neuromark framework, automated independent component analysis is applied to resting state fMRI data, capturing functional network connectivity (FNC) matrices. Global and local graph metrics reveal intricate connectivity patterns, emphasizing the need for nuanced analysis. Notably, node sizes, computed based on voxel counts, contribute to a novel metric termed 'node-metric coupling' (NMC). Correlations between graph metrics and node dimensions are consistently observed. The study extends its analysis to a dataset comprising Alzheimer's disease, mild cognitive impairment, and control subjects, showcasing the potential of NMC as a biomarker for brain disorders. The two key outcomes underscore the interplay between node sizes and resultant graph metrics within a given atlas, shedding light on an often-overlooked source of variability. Additionally, the study highlights the utility of NMC as a valuable biomarker, emphasizing the necessity of accounting for node sizes in future neuroimaging investigations. This work contributes to refining comparative studies employing diverse atlases and advocates for thoughtful consideration of intra-atlas node size in shaping graph metrics, paving the way for more robust neuroimaging research.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores , Encéfalo/diagnóstico por imagem
8.
medRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260328

RESUMO

Many psychiatric and neurological disorders show significant heritability, indicating strong genetic influence. In parallel, dynamic functional network connectivity (dFNC) measures functional temporal coupling between brain networks in a time-varying manner and has proven to identify disease-related changes in the brain. However, it remains largely unclear how genetic risk contributes to brain dysconnectivity that further manifests into clinical symptoms. The current work aimed to address this gap by proposing a novel joint ICA (jICA)-based "dynamic fusion" framework to identify dynamically tuned SNP manifolds by linking static SNPs to dynamic functional information of the brain. The sliding window approach was utilized to estimate four dFNC states and compute subject-level state-specific dFNC features. Each state of dFNC features were then combined with 12946 SZ risk SNPs for jICA decomposition, resulting in four parallel fusions in 32861 European ancestry individuals within the UK Biobank cohort. The identified joint SNP-dFNC components were further validated for SZ relevance in an aggregated SZ cohort, and compared for across-state similarity to indicate level of dynamism. The results supported that dynamic fusion yielded "static" and "dynamic" components (i.e., high and low across-state similarity, respectively) for SNP and dFNC modalities. As expected, the SNP components presented a mixture of static and dynamic manifolds, with the latter largely driven by fusion with dFNC. We also showed that some of the dynamic SNP manifolds uniquely elicited by fusion with state-specific dFNC features complemented each other in terms of biological interpretation. This dynamic fusion framework thus allows expanding the SNP modality to manifolds in the time dimension, which provides a unique lens to elicit unique SNP correlates of dFNC otherwise unseen, promising additional insights on how genetic risk links to disease-related dysconnectivity.

9.
Res Sq ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260417

RESUMO

Children's brains dynamically adapt to the stimuli from the internal state and the external environment, allowing for changes in cognitive and mental behavior. In this work, we performed a large-scale analysis of dynamic functional connectivity (DFC) in children aged 9 ~ 11 years, investigating how brain dynamics relate to cognitive performance and mental health at an early age. A hybrid independent component analysis framework was applied to the Adolescent Brain Cognitive Development (ABCD) data containing 10,988 children. We combined a sliding-window approach with k-means clustering to identify five brain states with distinct DFC patterns. Interestingly, the occurrence of a strongly connected state was negatively correlated with cognitive performance and positively correlated with dimensional psychopathology in children. Meanwhile, opposite relationships were observed for a sparsely connected state. The composite cognitive score and the ADHD score were the most significantly correlated with the DFC states. The mediation analysis further showed that attention problems mediated the effect of DFC states on cognitive performance. This investigation unveils the neurological underpinnings of DFC states, which suggests that tracking the transient dynamic connectivity may help to characterize cognitive and mental problems in children and guide people to provide early intervention to buffer adverse influences.

10.
IEEE Trans Biomed Eng ; 71(4): 1170-1178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38060365

RESUMO

OBJECTIVE: Multi-site collaboration is essential for overcoming small-sample problems when exploring reproducible biomarkers in MRI studies. However, various scanner-specific factors dramatically reduce the cross-scanner replicability. Moreover, existing harmony methods mostly could not guarantee the improved performance of downstream tasks. METHODS: we proposed a new multi-scanner harmony framework, called 'maximum classifier discrepancy generative adversarial network', or MCD-GAN, for removing scanner effects in the original feature space while preserving substantial biological information for downstream tasks. Specifically, the adversarial generative network was utilized for persisting the structural layout of each sample, and the maximum classifier discrepancy module was introduced for regulating GAN generators by incorporating the downstream tasks. RESULTS: We compared the MCD-GAN with other state-of-the-art data harmony approaches (e.g., ComBat, CycleGAN) on simulated data and the Adolescent Brain Cognitive Development (ABCD) dataset. Results demonstrate that MCD-GAN outperformed other approaches in improving cross-scanner classification performance while preserving the anatomical layout of the original images. SIGNIFICANCE: To the best of our knowledge, the proposed MCD-GAN is the first generative model which incorporates downstream tasks while harmonizing, and is a promising solution for facilitating cross-site reproducibility in various tasks such as classification and regression.


Assuntos
Encéfalo , Cognição , Adolescente , Humanos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
11.
Biol Psychiatry ; 95(7): 699-708, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769983

RESUMO

BACKGROUND: Accurate psychiatric risk assessment requires biomarkers that are both stable and adaptable to development. Functional network connectivity (FNC), which steadily reconfigures over time, potentially contains abundant information to assess psychiatric risks. However, the absence of suitable analytical methodologies has constrained this area of investigation. METHODS: We investigated the brainwide risk score (BRS), a novel FNC-based metric that contrasts the relative distances of an individual's FNC to that of psychiatric disorders versus healthy control references. To generate group-level disorder and healthy control references, we utilized a large brain imaging dataset containing 5231 total individuals diagnosed with schizophrenia, autism spectrum disorder, major depressive disorder, and bipolar disorder and their corresponding healthy control individuals. The BRS metric was employed to assess the psychiatric risk in 2 new datasets: Adolescent Brain Cognitive Development (ABCD) Study (n = 8191) and Human Connectome Project Early Psychosis (n = 170). RESULTS: The BRS revealed a clear, reproducible gradient of FNC patterns from low to high risk for each psychiatric disorder in unaffected adolescents. We found that low-risk ABCD Study adolescent FNC patterns for each disorder were strongly present in over 25% of the ABCD Study participants and homogeneous, whereas high-risk patterns of each psychiatric disorder were strongly present in about 1% of ABCD Study participants and heterogeneous. The BRS also showed its effectiveness in predicting psychosis scores and distinguishing individuals with early psychosis from healthy control individuals. CONCLUSIONS: The BRS could be a new image-based tool for assessing psychiatric vulnerability over time and in unaffected individuals, and it could also serve as a potential biomarker, facilitating early screening and monitoring interventions.


Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Transtornos Mentais , Humanos , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Fatores de Risco , Biomarcadores , Encéfalo/diagnóstico por imagem
12.
Schizophr Res ; 264: 130-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128344

RESUMO

BACKGROUND: Similarities among schizophrenia (SZ), schizoaffective disorder (SAD) and bipolar disorder (BP) including clinical phenotypes, brain alterations and risk genes, make it challenging to perform reliable separation among them. However, previous subtype identification that transcend traditional diagnostic boundaries were based on group-level neuroimaging features, ignoring individual-level inferences. METHODS: 455 psychoses (178 SZs, 134 SADs and 143 BPs), their first-degree relatives (N = 453) and healthy controls (HCs, N = 220) were collected from Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP I) consortium. Individualized covariance structural differential networks (ICSDNs) were constructed for each patient and multi-site clustering was used to identify psychosis subtypes. Group differences between subtypes in clinical phenotypes and voxel-wise fractional amplitude of low frequency fluctuation (fALFF) were calculated, as well as between the corresponding relatives. RESULTS: Two psychosis subtypes were identified with increased whole brain structural covariance, with decreased connectivity between amygdala-hippocampus and temporal-occipital cortex in subtype I (S-I) compared to subtype II (S-II), which was replicated under different clustering methods, number of edges and across datasets (B-SNIP II) and different brain atlases. S-I had higher emotional-related symptoms than S-II and showed significant fALFF decrease in temporal and occipital cortex, while S-II was more similar to HC. This pattern was consistently validated on relatives of S-I and S-II in both fALFF and clinical symptoms. CONCLUSIONS: These findings reconcile categorical and dimensional perspectives of psychosis neurobiological heterogeneity, indicating that relatives of S-I might have greater predisposition in developing psychosis, while relatives of S-II are more likely to be healthy. This study contributes to the development of neuroimaging informed diagnostic classifications within psychosis spectrum.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Humanos , Família/psicologia , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/genética , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Transtorno Bipolar/psicologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
13.
Biol Psychiatry ; 95(9): 828-838, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38151182

RESUMO

BACKGROUND: Environmental exposures play a crucial role in shaping children's behavioral development. However, the mechanisms by which these exposures interact with brain functional connectivity and influence behavior remain unexplored. METHODS: We investigated the comprehensive environment-brain-behavior triple interactions through rigorous association, prediction, and mediation analyses, while adjusting for multiple confounders. Particularly, we examined the predictive power of brain functional network connectivity (FNC) and 41 environmental exposures for 23 behaviors related to cognitive ability and mental health in 7655 children selected from the Adolescent Brain Cognitive Development (ABCD) Study at both baseline and follow-up. RESULTS: FNC demonstrated more predictability for cognitive abilities than for mental health, with cross-validation from the UK Biobank study (N = 20,852), highlighting the importance of thalamus and hippocampus in longitudinal prediction, while FNC+environment demonstrated more predictive power than FNC in both cross-sectional and longitudinal prediction of all behaviors, especially for mental health (r = 0.32-0.63). We found that family and neighborhood exposures were common critical environmental influencers on cognitive ability and mental health, which can be mediated by FNC significantly. Healthy perinatal development was a unique protective factor for higher cognitive ability, whereas sleep problems, family conflicts, and adverse school environments specifically increased risk of poor mental health. CONCLUSIONS: This work revealed comprehensive environment-brain-behavior triple interactions based on the ABCD Study, identified cognitive control and default mode networks as the most predictive functional networks for a wide repertoire of behaviors, and underscored the long-lasting impact of critical environmental exposures on childhood development, in which sleep problems were the most prominent factors affecting mental health.


Assuntos
Cognição , Transtornos do Sono-Vigília , Criança , Adolescente , Humanos , Estudos Transversais , Saúde Mental , Encéfalo , Imageamento por Ressonância Magnética
14.
Biol Psychiatry ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38070846

RESUMO

BACKGROUND: Schizophrenia research reveals sex differences in incidence, symptoms, genetic risk factors, and brain function. However, a knowledge gap remains regarding sex-specific schizophrenia alterations in brain function. Schizophrenia is considered a dysconnectivity syndrome, but the dynamic integration and segregation of brain networks are poorly understood. Recent advances in resting-state functional magnetic resonance imaging allow us to study spatial dynamics, the phenomenon of brain networks spatially evolving over time. Nevertheless, estimating time-resolved networks remains challenging due to low signal-to-noise ratio, limited short-time information, and uncertain network identification. METHODS: We adapted a reference-informed network estimation technique to capture time-resolved networks and their dynamic spatial integration and segregation for 193 individuals with schizophrenia and 315 control participants. We focused on time-resolved spatial functional network connectivity, an estimate of network spatial coupling, to study sex-specific alterations in schizophrenia and their links to genomic data. RESULTS: Our findings are consistent with the dysconnectivity and neurodevelopment hypotheses and with the cerebello-thalamo-cortical, triple-network, and frontoparietal dysconnectivity models, helping to unify them. The potential unification offers a new understanding of the underlying mechanisms. Notably, the posterior default mode/salience spatial functional network connectivity exhibits sex-specific schizophrenia alteration during the state with the highest global network integration and is correlated with genetic risk for schizophrenia. This dysfunction is reflected in regions with weak functional connectivity to corresponding networks. CONCLUSIONS: Our method can effectively capture spatially dynamic networks, detect nuanced schizophrenia effects including sex-specific ones, and reveal the intricate relationship of dynamic information to genomic data. The results also underscore the clinical potential of dynamic spatial dependence and weak connectivity.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38083120

RESUMO

The dynamics of the human brain can be captured by estimating time-resolved functional network connectivity (trFNC). The most used method for estimating trFNC is sliding window Pearson correlation (SWPC). Methods based on instantaneous phase synchrony, which uses phase information for estimating trFNC are being increasingly used. These two approaches are similar under specific assumptions. Prior works have focused on which of these approaches is the best. Some works argue that SWPC can capture amplitude information and therefore we believe that instantaneous phase synchrony methods and SWPC capture different aspects of connectivity since phase synchrony methods work with the phase of the signal. Here we show that these two approaches result in different time-resolved information and therefore should be viewed as complimentary views of connectivity.


Assuntos
Encéfalo , Humanos , Encéfalo/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38082649

RESUMO

Functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) are two widely used techniques to analyze longitudinal brain functional and structural change in adolescents. Although longitudinal changes in intrinsic functional and structural changes have been studied separately, most studies focus on univariate change rather than estimating multivariate patterns of functional network connectivity (FNC) and gray matter (GM) changes with increased age. To analyze whole-brain structural and functional changes with increased age, we suggest two complementary techniques (1: linking of functional change pattern (FCP) to voxel-wise ∆GM and 2: the connection between FCP and structural change pattern (SCP)). In this study, we apply our approaches to the functional and GM data from the large-scale Adolescent Brain and Cognitive Development (ABCD) data. We find a significant correlation between FCP and voxel-wise ∆GM for two components. We also investigate the links between FCP and SCP and hypothesize that functional connectivity and GM continue to exhibit linked changes during adolescence.Clinical Relevance- This work captures the whole-brain functional and structural change patterns link by introducing two complementary techniques.


Assuntos
Encéfalo , Substância Cinzenta , Adolescente , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral
17.
Res Sq ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37790426

RESUMO

Attention deficit hyperactivity disorder (ADHD) is one prevalent neurodevelopmental disorder with childhood onset, however, there is no clear correspondence established between clinical ADHD subtypes and primary medications. Identifying objective and reliable neuroimaging markers for categorizing ADHD biotypes may lead to more individualized, biotype-guided treatment. Here we proposed graph convolutional network plus deep clustering for ADHD biotype detection using functional network connectivity (FNC), resulting in two biotypes based on 1069 ADHD patients selected from Adolescent Brain and Cognitive Development (ABCD) study, which were well replicated on independent ADHD adolescents undergoing longitudinal medication treatment (n=130). Interestingly, in addition to differences in cognitive performance and hyperactivity/impulsivity symptoms, biotype 1 treated with methylphenidate demonstrated significantly better recovery than biotype 2 treated with atomoxetine (p<0.05, FDR corrected). This imaging-driven, biotype-guided approach holds promise for facilitating personalized treatment of ADHD, exploring possible boundaries through innovative deep learning algorithms aimed at improving medication treatment effectiveness.

18.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37786683

RESUMO

Despite increasing interest in the dynamics of functional brain networks, most studies focus on the changing relationships over time between spatially static networks or regions. Here we propose an approach to study dynamic spatial brain net-works in human resting state functional magnetic resonance imaging (rsfMRI) data and evaluate the temporal changes in the volumes of these 4D networks. Our results show significant volumetric coupling (i.e., synchronized shrinkage and growth) between networks during the scan. We find that several features of such dynamic spatial brain networks are associated with cognition, with higher dynamic variability in these networks and higher volumetric coupling between network pairs positively associated with cognitive performance. We show that these networks are modulated differently in individuals with schizophrenia versus typical controls, resulting in network growth or shrinkage, as well as altered focus of activity within a network. Schizophrenia also shows lower spatial dynamical variability in several networks, and lower volumetric coupling between pairs of networks, thus upholding the role of dynamic spatial brain networks in cognitive impairment seen in schizophrenia. Our data show evidence for the importance of studying the typically overlooked voxelwise changes within and between brain networks.

19.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645839

RESUMO

The discrepancy between chronological age and estimated brain age, known as the brain age gap, may serve as a biomarker to reveal brain development and neuropsychiatric problems. This has motivated many studies focusing on the accurate estimation of brain age using different features and models, of which the generalizability is yet to be tested. Our recent study has demonstrated that conventional machine learning models can achieve high accuracy on brain age prediction during development using only a small set of selected features from multimodal brain imaging data. In the current study, we tested the replicability of various brain age models on the Adolescent Brain Cognitive Development (ABCD) cohort. We proposed a new refined model to improve the robustness of brain age prediction. The direct replication test for existing brain age models derived from the age range of 8-22 years onto the ABCD participants at baseline (9 to 10 years old) and year-two follow-up (11 to 12 years old) indicate that pre-trained models could capture the overall mean age failed precisely estimating brain age variation within a narrow range. The refined model, which combined broad prediction of the pre-trained model and granular information with the narrow age range, achieved the best performance with a mean absolute error of 0.49 and 0.48 years on the baseline and year-two data, respectively. The brain age gap yielded by the refined model showed significant associations with the participants' information processing speed and verbal comprehension ability on baseline data.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37266485

RESUMO

Deep learning models can perform as well or better than humans in many tasks, especially vision related. Almost exclusively, these models are used to perform classification or prediction. However, deep learning models are usually of black-box nature, and it is often difficult to interpret the model or the features. The lack of interpretability causes a restrain from applying deep learning to fields such as neuroimaging, where the results must be transparent, and interpretable. Therefore, we present a 'glass-box' deep learning model and apply it to the field of neuroimaging. Our model mixes spatial and temporal dimensions in succession to estimate dynamic connectivity between the brain's intrinsic networks. The interpretable connectivity matrices produced by our model result in beating state-of-the-art models on many tasks using multiple functional MRI datasets. More importantly, our model estimates task-based flexible connectivity matrices, unlike static methods such as Pearson's correlation coefficients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA