Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
J Inflamm Res ; 17: 2547-2561, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686360

RESUMO

Introduction: Neutrophil predominant airway inflammation is associated with severe and steroid-resistant asthma clusters. Previously, we reported efficacy of ASHMI, a three-herb TCM asthma formula in a steroid-resistant neutrophil-dominant murine asthma model and further identified Ganoderic Acid C1 (GAC1) as a key ASHMI active compound in vitro. The objective of this study is to investigate GAC1 effect on neutrophil-dominant, steroid-resistant asthma in a murine model. Methods: In this study, Balb/c mice were systematically sensitized with ragweed (RW) and alum and intranasally challenged with ragweed. Unsensitized/PBS challenged mice served as normal controls. Post sensitization, mice were given 4 weeks of oral treatment with GAC1 or acute dexamethasone (Dex) treatment at 48 hours prior to challenge. Pulmonary cytokines were measured by ELISA, and lung sections were processed for histology by H&E staining. Furthermore, GAC1 effect on MUC5AC expression and on reactive oxygen species (ROS) production in human lung epithelial cell line (NCI-H292) was determined by qRT-PCR and ROS assay kit, respectively. Computational analysis was applied to select potential targets of GAC1 in steroid-resistant neutrophil-dominant asthma. Molecular docking was performed to predict binding modes between GAC1 and Dex with TNF-α. Results: The result of the study showed that chronic GAC1 treatment, significantly reduced pulmonary inflammation (P < 0.01-0.001 vs Sham) and airway neutrophilia (P < 0.01 vs Sham), inhibited TNF-α, IL-4 and IL-5 levels (P < 0.05-0.001 vs Sham). Acute Dex treatment reduced eosinophilic inflammation and IL-4, IL-5 levels, but had no effect on neutrophilia and TNF-α production. GAC1 treated H292 cells showed decreased MUC5AC gene expression and production of ROS (P < 0.001 vs stimulated/untreated cells). Molecular docking results showed binding energy of complex GAC1-TNF was -10.8 kcal/mol. Discussion: GAC1 may be a promising anti-asthma botanical drug for treatment of steroid-resistant asthma.

2.
BMC Chem ; 18(1): 86, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678235

RESUMO

As a solid energy source, CH4 hydrate will inevitably break down physically as the result of geological movement or exploitation. Here, the molecular dynamics method was employed to simulate the uniaxial-deformation behavior of structure I (sI type) CH4 hydrate under stress. The stress increases regardless of whether the hydrate is stretched or squeezed, and other physical parameters also changed, such as hydrate cage numbers, order parameters, and the number of water molecules. A noticeable difference is observed between the two systems. Upon stretching, the stress immediately recovers to 0 GPa once the hydrate is completely stretched apart. During the squeeze process, the stress is ultimately not zero since solid and liquid are always in contact. When the hydrate is stretched apart, about 5% of water molecules change from solid to liquid, about 7.8% of CH4 molecules lose their shelter and become free due to the disintegration of water cages. While in the squeezing process, large cages (51262) are crushed more easily than small cages (512); in the end, about 93.5% of large cages and 73% of small cages are crushed, and approximately 87.5% CH4 is released from the cages. In mining CH4 hydrates, caution must be exercised, as if the hydrates break as a result of stress, a large release of CH4 may pose a security risk.

3.
Cancers (Basel) ; 16(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38539453

RESUMO

tRNA-derived fragments (tRFs) play crucial roles in cancer progression. Among them, tRF-27 has been identified as a key factor in promoting naïve trastuzumab resistance in HER2-positive breast cancer. However, the origin of tRF-27 remains uncertain. In this study, we propose that the upregulated expression of specific cysteine tRNAs may lead to the increased accumulation of tRF-27 in trastuzumab-resistant JIMT1 cells. Mechanistically, the reduced inhibitory H3K27me3 modification at the promoter regions of tRF-27-related tRNA genes in JIMT1 cells, potentially resulting from decreased EZH2 and increased KDM6A activity, may be a critical factor stimulating the transcriptional activity of these tRNA genes. Our research offers fresh insights into the mechanisms underlying elevated tRF-27 levels in trastuzumab-resistant breast cancer cells and suggests potential strategies to mitigate trastuzumab resistance in clinical treatments.

4.
Clin Transl Oncol ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554191

RESUMO

BACKGROUND: The objective of this research was to investigate how the combination of semen coicis extract and PD-1 inhibitors can potentially work together to enhance the anti-tumor effects, with a focus on understanding the underlying mechanism. METHODS: We obtained the active components and specific targets of semen coicis in the treatment of NSCLC from various databases, namely TCMSP, GeneCard, and OMIM. By utilizing the STRING database and Cytoscape software, we established a protein interaction network (PPI) for the active ingredient of semen coicis and the target genes related to NSCLC. To explore the potential pathways involved, we conducted gene ontology (GO) and biological pathway (KEGG) enrichment analyses, which were further supported by molecular docking technology. Additionally, we conducted cyto-inhibition experiments to verify the inhibitory effects of semen coicis alone or in combination with a PD-1 inhibitor on A549 cells, along with examining the associated pathways. Furthermore, we investigated the synergistic mechanism of these two drugs through cytokine release experiments and the PD-L1 expression study on A549 cells. RESULTS: Semen coicis contains two main active components, Omaine and (S)-4-Nonanolide. Its primary targets include PIK3R1, PIK3CD, PIK3CA, AKT2, and mTOR. Molecular docking experiments confirmed that these ingredients and targets form stable bonds. In vitro experiments showed that semen coicis demonstrates inhibitory effects against A549 cells, and this effect was further enhanced when combined with PD-1 inhibitors. PCR and WB analysis confirmed that the inhibition of the PI3K-AKT-mTOR pathway may contribute to this effect. Additionally, semen coicis was observed to decrease the levels of IFN-γ, IL-6, and TNF-α, promoting the recovery of the human anti-tumor immune response. And semen coicis could inhibit the induced expression of PD­L1 of A549 cells stimulated by IFN­Î³ as well. CONCLUSION: Semen coicis not only has the ability to kill tumor cells directly but also alleviates the immunosuppression found in the tumor microenvironment. Additionally, it collaboratively enhances the effectiveness of PD-1 inhibitors against tumors by blocking the activation of PI3K-AKT-mTOR.

5.
Adv Sci (Weinh) ; 11(18): e2309424, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460162

RESUMO

Secondary trastuzumab resistance represents an evolutionary adaptation of HER2-positive breast cancer during anti-HER2 treatment. Most current studies have tended to prioritize HER2 and its associated signaling pathways, often overlooking broader but seemingly less relevant cellular processes, along with their associated genetic and epigenetic mechanisms. Here, transcriptome data is not only characterized but also examined epigenomic and 3D genome architecture information in both trastuzumab-sensitive and secondary-resistant breast cancer cells. The findings reveal that the global metabolic reprogramming associated with trastuzumab resistance may stem from genome-wide alterations in both histone modifications and chromatin structure. Specifically, the transcriptional activities of key genes involved in lipid metabolism appear to be regulated by variant promoter H3K27me3 and H3K4me3 modifications, as well as promoter-enhancer interactions. These discoveries offer valuable insights into how cancer cells adapt to anti-tumor drugs and have the potential to impact future diagnostic and treatment strategies.


Assuntos
Neoplasias da Mama , Cromatina , Epigênese Genética , Metabolismo dos Lipídeos , Receptor ErbB-2 , Trastuzumab , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Trastuzumab/uso terapêutico , Trastuzumab/farmacologia , Feminino , Epigênese Genética/genética , Epigênese Genética/efeitos dos fármacos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Cromatina/metabolismo , Cromatina/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Reprogramação Metabólica
6.
Acta Pharmacol Sin ; 45(6): 1287-1304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360930

RESUMO

HER2-positive (HER2+) metastatic breast cancer (mBC) is highly aggressive and a major threat to human health. Despite the significant improvement in patients' prognosis given the drug development efforts during the past several decades, many clinical questions still remain to be addressed such as efficacy when combining different therapeutic modalities, best treatment sequences, interindividual variability as well as resistance and potential coping strategies. To better answer these questions, we developed a mechanistic quantitative systems pharmacology model of the pathophysiology of HER2+ mBC that was extensively calibrated and validated against multiscale data to quantitatively predict and characterize the signal transduction and preclinical tumor growth kinetics under different therapeutic interventions. Focusing on the second-line treatment for HER2+ mBC, e.g., antibody-drug conjugates (ADC), small molecule inhibitors/TKI and chemotherapy, the model accurately predicted the efficacy of various drug combinations and dosing regimens at the in vitro and in vivo levels. Sensitivity analyses and subsequent heterogeneous phenotype simulations revealed important insights into the design of new drug combinations to effectively overcome various resistance scenarios in HER2+ mBC treatments. In addition, the model predicted a better efficacy of the new TKI plus ADC combination which can potentially reduce drug dosage and toxicity, while it also shed light on the optimal treatment ordering of ADC versus TKI plus capecitabine regimens, and these findings were validated by new in vivo experiments. Our model is the first that mechanistically integrates multiple key drug modalities in HER2+ mBC research and it can serve as a high-throughput computational platform to guide future model-informed drug development and clinical translation.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Humanos , Feminino , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Farmacologia em Rede , Modelos Biológicos , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Camundongos , Linhagem Celular Tumoral , Metástase Neoplásica
7.
NPJ Breast Cancer ; 10(1): 11, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280882

RESUMO

Triple-negative breast cancer (TNBC) is generally regarded as the most aggressive subtype among breast cancers, but exhibits higher chemotherapeutic and immunotherapeutic responses due to its unique immunogenicity. Thus, appropriate discrimination of subtypes is critical for guiding therapeutic options in clinical practice. In this research, using multiple in-house and public cohorts, we investigated the expression features and immuno-correlations of B7-H3 in breast cancer and checked the anti-tumor effect of the B7-H3 monoclonal antibody in a mouse model. We also developed a novel classifier combining B7-H3 and PD-L1 expression in TNBC. B7-H3 was revealed to be related to immuno-cold features and accumulated collagen in TNBC. In addition, targeting B7-H3 using the monoclonal antibody significantly suppressed mouse TNBC growth, reversed the armored-cold phenotype, and also boosted anti-PD-1 immunotherapy. In addition, patients with B7-H3 high and PD-L1 low expression showed the lowest anti-tumor immune infiltration, the highest collagen level, and the lowest therapeutic responses to multiple therapies, which mostly belong to armored-cold tumors. Overall, this research provides a novel subtyping strategy based on the combination of B7-H3/PD-L1 expression, which leads to a novel approach for the management of TNBC.

8.
J Immunother Cancer ; 12(1)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296593

RESUMO

BACKGROUND: Extensive attention has been given to the role of myeloid-derived suppressor cells (MDSCs) in driving tumor progression and treatment failure. Preclinical studies have identified multiple agents that eliminate MDSCs. However, none have been authorized in the cliniccal ues due to the safety reasons. In the present study, we investigated the efficacy and mechanism of sulforaphane (SFN) to eliminate MDSCs in the tumor microenvironment (TME). METHODS: We monitored SFN effect on tumor growth and the percents or apoptosis of immune cell subsets in mice models bearing LLC or B16 cells. Flow cytometry, quantitative reverse transcription-PCR, immunohistochemistry, ELISA, immunofluorescence, imaging flow cytometry and western blot were performed to validate the role of SFN on MDSCs function in vivo and in vitro. RNA sequencing was then used to interrogate the mechanisms of how SFN regulated MDSCs function. Tumor xenograft models were established to evaluate the involvement of IL-12RB2/MMP3/FasL induced MDSCs apoptosis in vivo. We verified the effect of SFN on MDSCs and CD8+ T cells in the blood samples from a phase I clinical trial (KY-2021-0350). RESULTS: In this study, we elucidated that SFN liberated CD8+ T-cell antitumor ability by reducing MDSCs abundance, leading to repressed tumor growth. SFN treatment suppressed MDSCs accumulation in the peripheral blood and tumor sites of mice, but had no effect on the bone marrow. Mechanistically, SFN activates IL-12RB2, which stimulates the MMP3/FasL signaling cascade to trigger caspase 3 cleavage and induce apoptosis in MDSCs. Clinically, SFN treatment eliminates peripheral MDSCs and increases the percentage and activation of CD8+ T cells. CONCLUSIONS: Collectively, we uncovered the role of SFN in eliminating MDSCs to emancipate CD8+ T cells through IL-12RB2/MMP3/FasL induced apoptosis, thus providing a strategy for targeting MDSCs to control tumors and improve clinical efficacy.


Assuntos
Isotiocianatos , Células Supressoras Mieloides , Sulfóxidos , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Metaloproteinase 3 da Matriz/farmacologia , Linhagem Celular Tumoral , Apoptose
9.
Acta Crystallogr C Struct Chem ; 79(Pt 12): 513-519, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019214

RESUMO

In order to investigate the viability of carbon dioxide (CO2) storage in seawater, molecular dynamics techniques were employed to study the dynamic evolution of CO2 hydrate in saline water. The simulation was conducted under specific conditions: a temperature of 275 K, a pressure of 10 MPa and a simulated marine environment achieved using a 3.4 wt% sodium chloride (NaCl) solution. The total simulation time was 1000 ns. The results of the simulation indicate that the pre-existence of CO2 hydrate crystals as seeds leads to rapid growth of CO2 hydrate. However, analysis of the F3 and F4 order parameters reveals that the hydrate does not meet the standard values of the perfect structure I (sI) type, confirming the existence of an imperfect structure during the simulation. Additionally, the changes in the number of different phase states of water molecules during the hydrate growth process shows that there are always some liquid water molecules, which means some water molecules fail to form solid water cages. Further investigation suggests that the presence of Na+ and Cl- hampers the hydrogen bonds between water molecules, resulting in incomplete cage structures. By analyzing the density variations in the system, it is observed that CO2 hydrate, with a density of around 1.133 g cm-3, forms rapidly, surpassing the average density of seawater. This density increase facilitates the efficient and swift containment of CO2 on the seabed, thereby supporting the feasibility of the CO2 storage theory.

10.
J Immunother Cancer ; 11(11)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016719

RESUMO

BACKGROUNDS: G-protein-coupled receptor 84 (GPR84) marks a subset of myeloid-derived suppressor cells (MDSCs) with stronger immunosuppression in the tumor microenvironment. Yet, how GPR84 endowed the stronger inhibition of MDSCs to CD8+ T cells function is not well established. In this study, we aimed to identify the underlying mechanism behind the immunosuppression of CD8+ T cells by GPR84+ MDSCs. METHODS: The role and underlying mechanism that MDSCs or exosomes (Exo) regulates the function of CD8+ T cells were investigated using immunofluorescence, fluorescence activating cell sorter (FACS), quantitative real-time PCR, western blot, ELISA, Confocal, RNA-sequencing (RNA-seq), etc. In vivo efficacy and mechanistic studies were conducted with wild type, GPR84 and p53 knockout C57/BL6 mice. RESULTS: Here, we showed that the transfer of GPR84 from MDSCs to CD8+ T cells via the Exo attenuated the antitumor response. This inhibitory effect was also observed in GPR84-overexpressed CD8+ T cells, whereas depleting GPR84 elevated CD8+ T cells proliferation and function in vitro and in vivo. RNA-seq analysis of CD8+ T cells demonstrated the activation of the p53 signaling pathway in CD8+ T cells treated with GPR84+ MDSCs culture medium. While knockout p53 did not induce senescence in CD8+ T cells treated with GPR84+ MDSCs. The per cent of GPR84+ CD8+ T cells work as a negative indicator for patients' prognosis and response to chemotherapy. CONCLUSIONS: These data demonstrated that the transfer of GPR84 from MDSCs to CD8+ T cells induces T-cell senescence via the p53 signaling pathway, which could explain the strong immunosuppression of GPR84 endowed to MDSCs.


Assuntos
Células Supressoras Mieloides , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Terapia de Imunossupressão , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Exaustão das Células T , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Front Genet ; 14: 1232325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953919

RESUMO

An unique subclass of functional non-coding RNAs generated by transfer RNA (tRNA) under stress circumstances is known as tRNA-derived small RNA (tsRNA). tsRNAs can be divided into tRNA halves and tRNA-derived fragments (tRFs) based on the different cleavage sites. Like microRNAs, tsRNAs can attach to Argonaute (AGO) proteins to target downstream mRNA in a base pairing manner, which plays a role in rRNA processing, gene silencing, protein expression and viral infection. Notably, tsRNAs can also directly bind to protein and exhibit functions in transcription, protein modification, gene expression, protein stabilization, and signaling pathways. tsRNAs can control the expression of tumor suppressor genes and participate in the initiation of cancer. It can also mediate the progression of diseases by regulating cell viability, migration ability, inflammatory factor content and autophagy ability. Precision medicine targeting tsRNAs and drug therapy of plant-derived tsRNAs are expected to be used in clinical practice. In addition, liquid biopsy technology based on tsRNAs indicates a new direction for the non-invasive diagnosis of diseases.

12.
iScience ; 26(11): 108302, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37953953

RESUMO

[This corrects the article DOI: 10.1016/j.isci.2023.106027.].

13.
Cancer Med ; 12(22): 20847-20863, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37935428

RESUMO

BACKGROUND: BAT1706 is a proposed biosimilar of bevacizumab (Avastin®). We aimed to compare the efficacy and safety of BAT1706 with that of EU-sourced reference bevacizumab (EU-bevacizumab) in patients with advanced nonsquamous non-small cell lung cancer (NSCLC). METHODS: Patients were randomized 1:1 to BAT1706 plus paclitaxel and carboplatin (BAT1706 arm) or EU-bevacizumab plus paclitaxel and carboplatin (EU-bevacizumab arm) given every 3 weeks for six cycles, followed by maintenance therapy with BAT1706 or EU-bevacizumab. The primary endpoint was overall response rate at week 18 (ORR18 ). Clinical equivalence was demonstrated if the 90% confidence interval (CI) of the BAT1706:EU-bevacizumab ORR18 risk ratio was contained within the predefined equivalence margins of 0.75-1.33 (China National Medical Products Administration requirements), or 0.73-1.36 (US Food and Drug Administration), or if the 95% CI of the ORR18 risk difference between treatments was contained within the predefined equivalence margin of -0.12 to 0.15 (EMA requirements). RESULTS: In total, 649 randomized patients (BAT1706, n = 325; EU-bevacizumab, n = 324) received at least one cycle of combination treatment. The ORR18 was comparable between the BAT1706 and EU-bevacizumab arms (48.0% and 44.5%, respectively). The ORR18 risk ratio of 1.08 (90% CI: 0.94-1.24) and the ORR18 risk difference of 0.03 (95% CI: -0.04 to 0.11) were within the predefined equivalence margins, demonstrating the biosimilarity of BAT1706 and EU-bevacizumab. The safety profile of BAT1706 was consistent with that of EU-bevacizumab and no new safety signals were observed. CONCLUSION: In patients with advanced nonsquamous NSCLC, BAT1706 demonstrated clinical equivalence to EU-bevacizumab in terms of efficacy, safety, pharmacokinetics, and immunogenicity.


Assuntos
Medicamentos Biossimilares , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica , Bevacizumab/efeitos adversos , Medicamentos Biossimilares/efeitos adversos , Carboplatina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Método Duplo-Cego , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/uso terapêutico
14.
Int Immunopharmacol ; 124(Pt A): 110820, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660592

RESUMO

OBJECTIVE: tRNA-derived fragments (tRFs) play crucial roles in the progression of various diseases, and widely distribute in human tissues, including blood and urine. The diagnosis of enthesitis-related arthritis (ERA) is based on the observation of clinical manifestations. Therefore, we aimed to investigate whether serum tRFs can be used as diagnostic markers for ERA. METHODS: Serum was collected from children admitted to the Children's Hospital Affiliated with Nanjing Medical University between February 2022 to October 2022. The expression profiles of tRFs in the serum of ERA patients (n = 5) and healthy controls (HCs; n = 5) were investigated using small RNA high-throughput sequencing. The level and diagnostic value of tRF-21-LNK8KEP1B were evaluated by real-time quantitative PCR in serum samples from 30 ERA patients and 31 HCs. The specificity and sensitivity of tRFs were determined using receiver operating characteristic analyses. Bioinformatics analysis was performed to explore and identify the potential biological pathways induced by tRFs. RESULTS: Ninety-eight upregulated and 63 downregulated tRFs were identified in the serum. We selected tRF-21-LNK8KEP1B as a candidate marker using KEGG pathway enrichment and PCR validation. tRF-21-LNK8KEP1B was substantially increased in the serum of ERA patients compared with that in HCs. The area under the curve (AUC) for tRF-21-LNK8KEP1B in the ERA group was 0.7849. CONCLUSIONS: Collectively, we demonstrated the promising role of serum tRF-21-LNK8KEP1B -levels as a diagnostic biomarker for ERA.


Assuntos
Artrite , RNA de Transferência , Criança , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Biomarcadores
15.
Breast J ; 2023: 2875972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711168

RESUMO

Tamoxifen is a drug used for treating breast cancer (BC), especially for individuals diagnosed with estrogen receptor-positive (ER+) BC. Its prolonged use could reduce the risk of recurrence and significantly lengthen the survival rate of BC patients. However, an increasing number of patients developed resistance to tamoxifen treatment, which reduced therapeutic efficiency and caused substandard prognosis. Therefore, the exploration of the molecular processes involved in tamoxifen resistance (TR) is urgently required. This investigation aimed to elucidate the relationship of microRNA-330 (miR-330-3p) with the TR of BC. There is little information on miR-330-3p's link with drug-resistant BC, although it is well known to regulate cell proliferation and apoptosis. Primarily, miR-330-3p expression in parental BC (MCF7/T47D), TR (MCF7-TR), and T47D/TR cell lines was detected by qRT-PCR. Then, the impact of miR-330-3p on the TR of BC cells was assessed by a cell proliferation assay. Lastly, dual-luciferase reporter, qRT-PCR, and western blot assessments were carried out to identify histone deacetylase 4 (HDAC4) as the potential miR-330-3p target gene. The data indicated that miRNA-330 was overexpressed in TR ER+ BC cells and its overexpression could induce TR. Furthermore, miRNA-330 could also reduce the expression of HDAC4, which is closely linked to TR, and overexpression of HDAC4 could reverse miRNA-330-induced drug resistance. In summary, miR-330-3p could induce TR of ER+ BC cells by downregulating HDAC4 expression, which might be a novel marker of TR and a possible treatment target against BC patients who are tamoxifen-resistant.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Receptores de Estrogênio , MicroRNAs/genética , Histona Desacetilases/genética , Proteínas Repressoras
16.
Br J Cancer ; 129(10): 1679-1691, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37731021

RESUMO

BACKGROUND: NME1 has been exploited as a potential translational target for decades. Substantial efforts have been made to upregulate the expression of NME1 and restore its anti-metastasis function in metastatic cancer. METHODS: Cycloheximide (CHX) chase assay was used to measure the steady-state protein stability of NME1 and HSP90α. The NME1-associating proteins were identified by immunoprecipitation combined with mass spectrometric analysis. Gene knockdown and overexpression were employed to examine the impact of HSP90AA1 on intracellular NME1 degradation. The motility and invasiveness of breast cancer cells were examined in vitro using wound healing and transwell invasion assays. The orthotopic spontaneous metastasis and intra-venous experimental metastasis assays were used to test the formation of metastasis in vivo, respectively. RESULTS: HSP90α interacts with NME1 and increases NME1 lifetime by impeding its ubiquitin-proteasome-mediated degradation. HSP90α overexpression significantly inhibits the metastatic potential of breast cancer cells in vitro and in vivo. A novel cell-permeable peptide, OPT22 successfully mimics the HSP90α function and prolongs the life span of endogenous NME1, resulting in reduced metastasis of breast cancer. CONCLUSION: These results not only reveal a new mechanism of NME1 degradation but also pave the way for the development of new and effective approaches to metastatic cancer therapy.


Assuntos
Neoplasias da Mama , Proteínas de Choque Térmico , Humanos , Feminino , Proteínas de Choque Térmico/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Processamento de Proteína Pós-Traducional , Proteínas de Choque Térmico HSP90/metabolismo , Metástase Neoplásica , Nucleosídeo NM23 Difosfato Quinases/genética
17.
Adv Sci (Weinh) ; 10(23): e2300898, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328448

RESUMO

Anti-angiogenic therapy has long been considered a promising strategy for solid cancers. Intrinsic resistance to hypoxia is a major cause for the failure of anti-angiogenic therapy, but the underlying mechanism remains unclear. Here, it is revealed that N4-acetylcytidine (ac4C), a newly identified mRNA modification, enhances hypoxia tolerance in gastric cancer (GC) cells by promoting glycolysis addiction. Specifically, acetyltransferase NAT10 transcription is regulated by HIF-1α, a key transcription factor of the cellular response to hypoxia. Further, acRIP-sequencing, Ribosome profiling sequencing, RNA-sequencing, and functional studies confirm that NAT10 in turn activates the HIF-1 pathway and subsequent glucose metabolism reprogramming by mediating SEPT9 mRNA ac4C modification. The formation of the NAT10/SEPT9/HIF-1α positive feedback loop leads to excessive activation of the HIF-1 pathway and induces glycolysis addiction. Combined anti-angiogenesis and ac4C inhibition attenuate hypoxia tolerance and inhibit tumor progression in vivo. This study highlights the critical roles of ac4C in the regulation of glycolysis addiction and proposes a promising strategy to overcome resistance to anti-angiogenic therapy by combining apatinib with ac4C inhibition.


Assuntos
Neoplasias Gástricas , Humanos , Retroalimentação , Glicólise , RNA Mensageiro , Hipóxia , Acetiltransferases N-Terminal
18.
J Cardiovasc Dev Dis ; 10(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36826574

RESUMO

BACKGROUND: Congenital heart disease (CHD) is one of the most predominant birth defects that causes infant death worldwide. The timely and successful surgical treatment of CHD on newborns after delivery requires accurate detection and reliable diagnosis during pregnancy. However, there are no biomarkers that can serve as an early diagnostic factor for CHD patients. tRNA-derived fragments (tRFs) have been reported to play an important role in the occurrence and progression of numerous diseases, but their roles in CHD remains unknown. METHODS: High-throughput sequencing was performed on the peripheral blood of pregnant women with an abnormal fetal heart and a normal fetal heart, and 728 differentially expressed tRFs/tiRNAs were identified, among which the top 18 tRFs/tiRNAs were selected as predictive biomarkers of CHD. Then, a quantitative reverse transcriptase polymerase chain reaction verified the expression of tRFs/tiRNAs in more clinical samples, and the correlation between tRFs/tiRNAs abnormalities and CHD was analyzed. RESULTS: tRF-58:74-Gly-GCC-1 and tiRNA-1:35-Leu-CAG-1-M2 may be promising biomarkers. Through further bioinformatics analysis, we predicted that TRF-58:744-GLy-GCC-1 could induce CHD by influencing biological metabolic processes. CONCLUSIONS: Our results provide a theoretical basis for the abnormally expressed tRF-58:74-Gly-GCC-1 in maternal peripheral blood as a new potential biomarker for the accurate diagnosis of CHD during pregnancy.

19.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36765853

RESUMO

Tamoxifen resistance remains a challenge in hormone receptor-positive (HR+) breast cancer. Recent evidence suggests that transfer ribonucleic acid (tRNA)-derived fragments play pivotal roles in the occurrence and development of various tumors. However, the relationship between tRNA-derived fragments and tamoxifen resistance remains unclear. In this study, we found that the expression of tRF-16-K8J7K1B was upregulated in tamoxifen-resistant cells in comparison with tamoxifen-sensitive cells. Higher levels of tRF-16-K8J7K1B were associated with shorter disease-free survival in HR+ breast cancer. Overexpression of tRF-16-K8J7K1B promotes tamoxifen resistance. Moreover, extracellular tRF-16-K8J7K1B could be packaged into exosomes and could disseminate tamoxifen resistance to recipient cells. Mechanistically, exosomal tRF-16-K8J7K1B downregulates the expression of apoptosis-related proteins, such as caspase 3 and poly (ADP-ribose) polymerase, by targeting tumor necrosis factor-related apoptosis-inducing ligand in receptor cells, thereby reducing drug-induced cell apoptosis. Therapeutically, the inhibition of exosomal tRF-16-K8J7K1B increases the sensitivity of breast cancer cells to tamoxifen in vivo. These data demonstrate that exosomal tRF-16-K8J7K1B may be a novel therapeutic target to overcome tamoxifen resistance in HR+ breast cancer.

20.
iScience ; 26(2): 106027, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36818292

RESUMO

Immune checkpoint inhibitors (ICIs) have transformed the management of advanced cancers. However, many patients could not benefit from ICIs therapy, and thus several biomarkers for therapeutic prediction have been uncovered. In this research, more than ten public and in-house cohorts were used to explore the predictive value and immunological correlations of secreted and transmembrane 1 (SECTM1) in cancers. SECTM1 expression was enhanced in tumors from patients with well immunotherapeutic responses in multiple cancers. In addition, SECTM1 was immuno-correlated in pan-cancer and enhanced in immuno-hot tumors. In vitro assays revealed that SECTM1 was upregulated by the IFN-γ/STAT1 signaling. Moreover, analysis of in-house immunotherapy cohorts suggested both tumor-expressed and circulating SECTM1 are promising biomarkers to predict therapeutic responses. Overall, this study reveals that SECTM1 is a biomarker of benefit to ICIs in cancer patients. Further studies including large-scale patients are needed to establish its utilization as a biomarker of benefit to ICIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA