Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Parasit Vectors ; 17(1): 171, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566239

RESUMO

BACKGROUND: Identification of mosquitoes greatly relies on morphological specification. Since some species cannot be distinguished reliably by morphological methods, it is important to incorporate molecular techniques into the diagnostic pipeline. DNA barcoding using Sanger sequencing is currently widely used for identification of mosquito species. However, this method does not allow detection of multiple species in one sample, which would be important when analysing mosquito eggs. Detection of container breeding Aedes is typically performed by collecting eggs using ovitraps. These traps consist of a black container filled with water and a wooden spatula inserted for oviposition support. Aedes mosquitoes of different species might lay single or multiple eggs on the spatula. In contrast to Sanger sequencing of specific polymerase chain reaction (PCR) products, multiplex PCR protocols targeting specific species of interest can be of advantage for detection of multiple species in the same sample. METHODS: For this purpose, we adapted a previously published PCR protocol for simultaneous detection of four different Aedes species that are relevant for Austrian monitoring programmes, as they can be found in ovitraps: Aedes albopictus, Aedes japonicus, Aedes koreicus, and Aedes geniculatus. For evaluation of the multiplex PCR protocol, we analysed 2271 ovitrap mosquito samples from the years 2021 and 2022, which were collected within the scope of an Austrian nationwide monitoring programme. We compared the results of the multiplex PCR to the results of DNA barcoding. RESULTS: Of 2271 samples, the multiplex PCR could identify 1990 samples, while species determination using DNA barcoding of the mitochondrial cytochrome c oxidase subunit I gene was possible in 1722 samples. The multiplex PCR showed a mixture of different species in 47 samples, which could not be detected with DNA barcoding. CONCLUSIONS: In conclusion, identification of Aedes species in ovitrap samples was more successful when using the multiplex PCR protocol as opposed to the DNA barcoding protocol. Additionally, the multiplex PCR allowed us to detect multiple species in the same sample, while those species might have been missed when using DNA barcoding with Sanger sequencing alone. Therefore, we propose that the multiplex PCR protocol is highly suitable and of great advantage when analysing mosquito eggs from ovitraps.


Assuntos
Aedes , Código de Barras de DNA Taxonômico , Feminino , Animais , Reação em Cadeia da Polimerase Multiplex , Óvulo , Aedes/genética , Mosquitos Vetores/genética
2.
Parasit Vectors ; 17(1): 32, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267960

RESUMO

BACKGROUND: In January 2021, a female 1-year-old Kunekune was presented at the University Clinic for Swine with severe reduction of the field of vision resulting in prolonged reaction time when targeting barriers, due to moderate to severe thickening of the skin around both orbits also affecting the eyelids. METHODS: Clinical examination revealed skin hyperplasia, nodular enlargement of the skin pores of the axillar and inguinal region. Ophthalmologists decided to remove parts of the thickened periocular skin, followed by histopathological examination. RESULTS: Once large amounts of demodectic mites were detected by histopathology, demodicosis could be diagnosed and treatment of the pig was started using sarolaner. Morphological and molecular analyses were performed. Histopathological and parasitological exams led to the aetiological diagnosis of demodicosis in the affected Kunekune pig. Severe skin lesions were revealed to be the consequence of an infestation with Demodex sp. Morphological analyses confirmed the involvement of D. phylloides. Molecular characterization indicated a Demodex species closely related to mites documented in wild boar - most probably D. phylloides for which no explicit sequences are available in GenBank yet. Treatment with sarolaner (2.6 mg/kg) resulted in a substantial regression of skin lesions, already detectable 1 month after first treatment. CONCLUSIONS: Demodicosis is a very rare disease in pigs that is most probably related to an impaired immune response to the mites. Demodectic mange should be included in the list of differential diagnoses in cases of periocular alterations of the skin of pigs.


Assuntos
Azetidinas , Pele , Compostos de Espiro , Suínos , Animais , Feminino , Instituições de Assistência Ambulatorial , Diagnóstico Diferencial
4.
Parasitol Res ; 123(1): 27, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072883

RESUMO

In this work, we investigated parasites of the firebug Pyrrhocoris apterus in Austria and demonstrated that in addition to the extensively studied Leptomonas pyrrhocoris, it can also be infected by Blastocrithidia sp. and by a mermithid, which for the first time has been characterized using molecular methods. This diversity can be explained by the gregarious lifestyle, as well as the coprophagous and cannibalistic behavior of the insect hosts that makes them susceptible to various parasites. In addition, we showed no tight association of the L. pyrrhocoris haplotypes and geographical locations (at least, considering the relatively small scale of locations in Austria) implying that the natural populations of L. pyrrhocoris are mixed due to the mobility of their firebug hosts.


Assuntos
Heterópteros , Parasitos , Trypanosomatina , Animais , Áustria , Heterópteros/parasitologia
5.
Parasitol Res ; 123(1): 79, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38158426

RESUMO

Aedes albopictus, the Asian tiger mosquito, is an invasive species not native to Europe. Due to its ability to transmit pathogens, such as dengue, chikungunya and Zika viruses, Ae. albopictus is considered a major health threat. In Austria, it was first reported in 2012 in the Western province of Tyrol and was documented in the metropolitan area of Vienna in 2020, demonstrating its ability to colonize urban areas. In July 2021, a garden owner from Graz, Styria, Austria, contacted experts because of the possible presence of tiger mosquitoes in an allotment garden complex. Accordingly, citizen scientists collected adult mosquitoes and set up ovitraps. Adults and eggs were sent to the laboratory for morphological examination and molecular DNA barcoding within the mitochondrial cytochrome c oxidase subunit I gene. In total, 217 eggs of Ae. albopictus were found at the allotment garden as well as at a second location in the city of Graz. In addition, 14 adult Ae. albopictus specimens, of which 7 were molecularly identified as an identical haplotype, were collected at the allotment garden. With its mild climate and numerous parks and gardens, Graz provides the perfect environment for reproduction of tropical/subtropical alien Aedes mosquitoes. The presence of eggs and adult specimens in the current study period indicates that Ae. albopictus is already breeding in Graz. However, monitoring efforts need to be continued to determine whether stable populations of Ae. albopictus can survive there.


Assuntos
Aedes , Ciência do Cidadão , Infecção por Zika virus , Zika virus , Animais , Aedes/genética , Jardins , Áustria , Mosquitos Vetores/genética
6.
Pathogens ; 12(10)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37887706

RESUMO

Phlebotomine sand flies (Diptera: Psychodidae) are the principal vectors of phleboviruses and Leishmania spp., the causative agents of leishmaniases. The Mediterranean sand fly fauna is diverse, and leishmaniasis, mainly caused by Leishmania infantum, is endemic in the Balkan countries. Despite recent entomological surveys, only some districts of Kosovo have been sampled for sand flies, with no proof/confirmation of L. infantum. This study aimed to gain further insights into the species composition of natural sand fly populations in previously unsampled districts and areas in Kosovo without reports of leishmaniasis and to detect Leishmania DNA in sand flies. A sand fly survey was conducted in 2022 in all seven districts of Kosovo. Collected females were screened for Leishmania DNA by PCR. Positive samples were sequenced and subjected to maximum likelihood analysis with reference sequences for further molecular characterization. The trapping activities at 114 different localities resulted in 3272 caught specimens, comprising seven sand fly species of two genera, namely Phlebotomus neglectus, Ph. perfiliewi, Ph. tobbi, Ph. papatasi, Ph. simici, Ph. balcanicus and Sergentomyia minuta. Leishmania infantum DNA was detected in three individual sand flies of Ph. neglectus and Ph. perfiliewi. This study provides the most extensive sand fly survey in Kosovo and reports the first record of L. infantum DNA in sand flies, indicating autochthonous circulation of L. infantum.

7.
Parasitol Res ; 122(12): 3181-3188, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37882819

RESUMO

Sarcoptes scabiei (Acari: Sarcoptidae) is a globally distributed parasitic mite species, which causes mange in a broad spectrum of domestic and wild mammals. In the present study, we report a case of chronic S. scabiei infestation in a captive lowland tapir (Tapirus terrestris) held in a multi-species exhibit at Vienna Zoo. The adult male showed clinically manifested mange flare-ups three times at an interval of up to 12 months, diagnosed by positive deep-skin scrapings and successfully treated by oral applications of ivermectin (0.1-0.2 mg/kg body weight) and washings with antimicrobial solutions. Clinical symptoms including pruritus, alopecia, erythema, crusts, and superficial bleedings were limited to the axillar and pectoral region, as well as distal limbs. The affected tapir died from underlying bacterial pneumonia during general anesthesia. Skin scrapings, necropsy, and histopathological analysis of mite material (eggs, larvae, and adults) permitted further morphological and molecular identification. The morphological features described here matched the characteristics for the species S. scabiei and molecular data verified morphological identification. Cross-species transmission plays a key role in the expansion of this neglected emerging panzootic disease and urban wildlife could potentially bridge the gap between free-ranging wildlife reservoirs and zoo animals. However, further examinations are needed to detect the primary source of infestation and discover transmission pathways within the zoo.


Assuntos
Sarcoptes scabiei , Escabiose , Animais , Masculino , Sarcoptes scabiei/genética , Escabiose/tratamento farmacológico , Escabiose/veterinária , Animais Selvagens/parasitologia , Pele/parasitologia , Mamíferos , Biologia Molecular
8.
Parasit Vectors ; 16(1): 325, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700369

RESUMO

BACKGROUND: Dirofilaria immitis, also known as heartworm, is one of the most important parasitic nematodes of domestic dogs, causing a potentially serious disease, cardiopulmonary dirofilariosis, which can be lethal. This species seems to be less 'expansive' than its sister species Dirofilaria repens, and it is believed that climate change facilitates the spread of this parasite to new non-endemic regions. METHODS: In total, 122 heartworm isolates were analysed from nine endemic countries in Europe (Portugal, Spain, Italy, Greece, Hungary, Romania, Slovakia, and Ukraine) and a single isolate from Bangladesh by amplification and sequencing of two mitochondrial (mt) DNA markers: cytochrome c oxidase subunit 1 (COI) and dehydrogenase subunit 1 (NADH). The main aim of the current study was to determine the genetic diversity of D. immitis and compare it with D. repens haplotype diversity and distribution. DNA was extracted from adult heartworms or microfilariae in blood. Most isolates originated from dogs (Canis lupus familiaris) while 10 isolates originated from wildlife species from Romania, including eight isolates from golden jackals (Canis aureus), one isolate from a Eurasian otter (Lutra lutra) and one isolate from a red fox (Vulpes vulpes). RESULTS: Median spanning network analysis was based on the combined sequence (1721 bp) obtained from two mt markers and successfully delineated nine haplotypes (Di1-Di9). Haplotype Di1 was the dominant haplotype encompassing 91 out of the 122 sequences (75%) from all nine countries and four host species. Haplotype Di2 was the second most common haplotype, formed solely by 13 isolates from Italy. The remaining sequences were assigned to Di3-Di9 haplotypes, differing by 1-4 SNPs from the dominant Di1 haplotype. There was evidence for geographical segregation of haplotypes, with three unique haplotypes associated with Italy and four others associated with certain countries (Di4 and Di7 with Slovakia; Di8 with Greece; Di6 with Hungary). CONCLUSION: Diversity in D. immitis mt haplotypes was lower by half than in D. repens (9 vs. 18 haplotypes in D. immitis and D. repens, respectively), which may be associated with the slower expansion of heartworm in Central and NE Europe. NADH gene appears to be conserved in Dirofilaria sp. by showing lower genetic diversity than the analysed COI gene.


Assuntos
Canidae , Dirofilaria immitis , Lontras , Cães , Animais , Dirofilaria immitis/genética , Haplótipos , NAD , Europa (Continente)/epidemiologia
9.
Parasit Vectors ; 16(1): 294, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620902

RESUMO

The zoonotic nematode Thelazia callipaeda infects the eyes of domestic and wild animals and uses canids as primary hosts. It was originally described in Asia, but in the last 20 years it has been reported in many European countries, where it is mainly transmitted by the drosophilid fruit fly Phortica variegata. We report the autochthonous occurrence of T. callipaeda and its vector P. variegata in Austria. Nematodes were collected from clinical cases and fruit flies were caught using traps, netting, and from the conjunctival sac of one dog. Fruit flies and nematodes were morphologically identified and a section of the mitochondrial cytochrome c oxidase subunit I gene (COI) was analysed. A DNA haplotype network was calculated to visualize the relation of the obtained COI sequences to published sequences. Additionally, Phortica spp. were screened for the presence of DNA of T. callipaeda by polymerase chain reaction. Thelazia callipaeda and P. variegata were identified in Burgenland, Lower Austria, and Styria. Thelazia callipaeda was also documented in Vienna and P. variegata in Upper Austria and South Tyrol, Italy. All T. callipaeda corresponded to haplotype 1. Twenty-two different haplotypes of P. variegata were identified in the fruit flies. One sequence was distinctly different from those of Phortica variegata and was more closely related to those of Phortica chi and Phortica okadai. Thelazia callipaeda could not be detected in any of the Phortica specimens.


Assuntos
Canidae , Aparelho Lacrimal , Thelazioidea , Animais , Cães , Áustria/epidemiologia , Filogenia , Itália/epidemiologia , Drosophila , Thelazioidea/genética
10.
Parasit Vectors ; 16(1): 179, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37269018

RESUMO

BACKGROUND: Hippoboscid flies (Diptera: Hippoboscidae), also known as louse flies or keds, are obligate blood-sucking ectoparasites of animals, and accidentally of humans. The potential role of hippoboscids as vectors of human and veterinary pathogens is being increasingly investigated, but the presence and distribution of infectious agents in louse flies is still unknown in parts of Europe. Here, we report the use of molecular genetics to detect and characterize vector-borne pathogens in hippoboscid flies infesting domestic and wild animals in Austria. METHODS: Louse flies were collected from naturally infested cattle (n = 25), sheep (n = 3), and red deer (n = 12) across Austria between 2015 and 2019. Individual insects were morphologically identified to species level and subjected to DNA extraction for molecular pathogen screening and barcoding. Genomic DNA from each louse fly was screened for Borrelia spp., Bartonella spp., Trypanosomatida, Anaplasmataceae, Filarioidea and Piroplasmida. Obtained sequences of Trypanosomatida and Bartonella spp. were further characterized by phylogenetic and haplotype networking analyses. RESULTS: A total of 282 hippoboscid flies corresponding to three species were identified: Hippobosca equina (n = 62) collected from cattle, Melophagus ovinus (n = 100) from sheep and Lipoptena cervi (n = 120) from red deer (Cervus elaphus). Molecular screening revealed pathogen DNA in 54.3% of hippoboscids, including infections with single (63.39%), two (30.71%) and up to three (5.90%) distinct pathogens in the same individual. Bartonella DNA was detected in 36.9% of the louse flies. Lipoptena cervi were infected with 10 distinct and previously unreported Bartonella sp. haplotypes, some closely associated with strains of zoonotic potential. DNA of trypanosomatids was identified in 34% of hippoboscids, including the first description of Trypanosoma sp. in H. equina. Anaplasmataceae DNA (Wolbachia spp.) was detected only in M. ovinus (16%), while < 1% of the louse flies were positive for Borrelia spp. and Filarioidea. All hippoboscids were negative for Piroplasmida. CONCLUSIONS: Molecular genetic screening confirmed the presence of several pathogens in hippoboscids infesting domestic and wild ruminants in Austria, including novel pathogen haplotypes of zoonotic potential (e.g. Bartonella spp.) and the first report of Trypanosoma sp. in H. equina, suggesting a potential role of this louse fly as vector of animal trypanosomatids. Experimental transmission studies and expanded monitoring of hippoboscid flies and hippoboscid-associated pathogens are warranted to clarify the competence of these ectoparasites as vectors of infectious agents in a One-Health context.


Assuntos
Anaplasmataceae , Anoplura , Bartonella , Cervos , Dípteros , Piroplasmida , Humanos , Animais , Ovinos , Bovinos , Cervos/parasitologia , Áustria/epidemiologia , Filogenia , Ruminantes , Bartonella/genética , Anaplasmataceae/genética
11.
Pathogens ; 12(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37111454

RESUMO

In equine stables and their surroundings, a large number of insects are present that can be a nuisance to their equine hosts. Previous studies about dipterans transmitting infectious agents to Equidae have largely focused on Nematocera. For the preparation of this systematic review, the existing literature (until February 2022) was systematically screened for various infectious agents transmitted to Equidae via insects of the suborder Brachycera, including Tabanidae, Muscidae, Glossinidae and Hippoboscidae, acting as pests or potential vectors. The PRISMA statement 2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for systematic reviews were followed. The two concepts, Brachycera and Equidae, were combined for the search that was carried out in three languages (English, German and French) using four different search engines. In total, 38 articles investigating Brachycera as vectors for viral, bacterial and parasitic infections or as pests of equids were identified. Only 7 of the 14 investigated pathogens in the 38 reports extracted from the literature were shown to be transmitted by Brachycera. This review clearly shows that further studies are needed to investigate the role of Brachycera as vectors for pathogens relevant to equine health.

12.
Pathogens ; 12(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36986328

RESUMO

Canine vector-borne diseases are of great relevance not only regarding animal welfare but also in relation to the One Health concept. Knowledge concerning the most relevant vector-borne pathogens in dogs is scarce and limited to stray dogs in most western African regions, and there is virtually no information about the situation in kept dogs presenting (regularly) to vets. Therefore, the blood samples of 150 owned guard dogs in the Ibadan area-in the southwest of Nigeria-were collected and analyzed for the DNA of Piroplasmida (Babesia, Hepatozoon, Theileria), Filarioidea (e.g., Dirofilaria immitis, Dirofilaria repens), Anaplasmataceae (e.g., Anaplasma, Ehrlichia), Trypanosomatidae (e.g., Leishmania, Trypanosoma), Rickettsia, Bartonella, Borrelia and hemotropic Mycoplasma using molecular methods. Overall, samples from 18 dogs (12%) tested positive for at least one pathogen. Hepatozoon canis (6%) was the most prevalent blood parasite, followed by Babesia rossi (4%). There was a single positive sample each for Babesia vogeli (0.6%) and Anaplasma platys (0.6%). Moreover, one mixed infection with Trypanosoma brucei/evansi and Trypanosoma congolense kilifi was confirmed (0.67%). Generally, the prevalence of vector-borne pathogens in this sample group of owned dogs in southwest Nigeria was lower than in prior studies from the country and in other parts of Africa in total. This leads to the assumption that, firstly, the exact geographical location has a major influence on the incidence of vector-borne diseases, and, secondly, it seems to make a difference if the dogs are owned and, therefore, regularly checked at a veterinary clinic. This study should raise awareness of the importance of routine health check-ups, tick and mosquito prophylaxis, and a well-managed infectious disease control program to prevent vector-borne diseases in canines.

13.
Parasit Vectors ; 16(1): 46, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726184

RESUMO

Onchocerca lupi is an emerging canine ocular pathogen with zoonotic potential. In Europe, known endemic areas are the Iberian Peninsula and Greece, but the parasite has also been found in Romania, Hungary, and Germany. A 5-year-old Irish Wolfhound was presented in August 2021 with ocular discharge. A subconjunctival granulomatous nodule containing several nematode fragments was removed. Molecular analysis of the mitochondrial cytochrome c oxidase subunit I gene confirmed the presence of O. lupi genotype 1. This is the first report of autochthonous O. lupi infection in a dog from Austria.


Assuntos
Doenças do Cão , Filariose , Oncocercose Ocular , Animais , Cães , Áustria , Doenças do Cão/diagnóstico , Doenças do Cão/parasitologia , Onchocerca/genética , Oncocercose Ocular/diagnóstico , Oncocercose Ocular/tratamento farmacológico , Oncocercose Ocular/veterinária
14.
Vet Parasitol ; 315: 109882, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36731209

RESUMO

Subcutaneous dirofilariosis is a fast-spreading infection of dogs, and occasionally of other carnivores and humans. Several factors contribute to its spread, including climate change, which facilitates development and survival of Dirofilaria repens in the mosquito vector. Movement/relocation of infected definitive hosts (dogs) from endemic regions to non-endemic regions is another possible cause of local emergence and the presence of a wide variety of wild reservoirs of the parasite may also contribute to its spread. The main aim of this study was to evaluate the genetic diversity of D. repens from different regions of Europe and to evaluate the spread of identified haplotypes and their geographic origin. A total of 95 D. repens isolates were obtained from Central and Eastern Europe (Poland, Belarus, Ukraine, Austria, Romania), NE Europe (Lithuania, Latvia, Estonia), Italy and Israel. All but two positive samples were obtained from the blood of dogs while one positive sample was obtained from an adult worm from a human case from the Lublin area in SE Poland and one sample was obtained from Anopheles plumbeus mosquito from Austria. Genetic diversity in D. repens isolates was evaluated by PCR amplification and sequencing of three genetic markers, including two mitochondrial genes (mtDNA): the cytochrome c oxidase subunit I (COI) and dehydrogenase subunit I (NADH). Additionally, the genomic marker, internal transcribed spacer 1 (ITS-1) was amplified and sequenced. Haplotypes were differentiated based on sequence alignments by identifying Single Nucleotide Polymorphism (SNPs) using DnaSP and Mega X. PopArt was used to construct a haplotype network including all identified haplotypes. Both mtDNA sequences (COI and NADH) were combined together for phylogenetic and network analyses. Altogether 18 haplotypes (DR1-DR18) were identified in combined mtDNA markers among 95 analysed samples. Haplotype DR1 was the most common encompassing 66 isolates: 42 isolates from Poland (41 from dogs and one from a human), 13 from Lithuania, 4 from Latvia, 2 from Ukraine and 5 from Romania. All other haplotypes grouped around haplotype DR1 separated by 1-5 SNPs, forming a star-like shape. Haplotype DR2 was the second most common haplotype, formed by six isolates from Romania. Interestingly, haplotype DR3 was represented only by four isolates from Israel. The remaining 15 haplotypes were represented by 1-4 isolates of different origins. Our study showed that only minor genetic diversity was found in D. repens since all isolates appear to have clustered in or branched out from haplotype DR1 with 1-5 SNP differences. The genetic diversity appears to be governed by geographic origin since isolates from neighbouring populations (countries) appear to share unique haplotypes while other populations that are geographically distant from individual haplotypes.


Assuntos
Dirofilaria repens , Dirofilariose , Doenças do Cão , Parasitos , Animais , Humanos , Cães , Polônia/epidemiologia , Dirofilaria repens/genética , Haplótipos , Filogenia , NAD/genética , Europa (Continente)/epidemiologia , Dirofilariose/epidemiologia , Dirofilariose/parasitologia , Oriente Médio , Variação Genética , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia
15.
Vet Parasitol Reg Stud Reports ; 37: 100820, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623901

RESUMO

A retrospective study on 699 cases of canine babesiosis presented to veterinary clinics in eastern Austria were evaluated for the location where infection had presumably taken place. Of these, 542 (77.54%) had acquired the infection in Austria, while the majority of non-autochthonous cases came from neighboring countries, most notable Hungary. Both groups were recorded primarily in Vienna, eastern Lower Austria and Burgenland, but cases from the southern (Styria, Carinthia) and western (Upper Austria, Tyrol, Salzburg) provinces of the country were also recorded. Records were made all year round, with most cases in spring (46.6%) and fall (48.4%). The annual cases ranged from four to 58 (mean: 31.8) with large fluctuations and no visible trend for an in- or decrease. The tick vector of Babesia canis, Dermacentor reticulatus, is present in Austria but displays a very patchy distribution, and its occurrence and activity are not readily foretold, which might be a reason why its presumably increasing density in Europe is not reflected by increased incidences of canine babesiosis. Another factor that may influence the numbers of cases per year could be the application (or non-application) of acaricidal or repellent compounds. A limitation of this study is that bias is exerted by the location of the participating clinics, and by the unknown rate of infections that does not induce clinical symptoms and is likely not presented in veterinary practices and clinics. The data, however, clearly show that at least the lowlands of Austria are endemic for B. canis, and appropriate tick control must be advised all year round.


Assuntos
Babesiose , Dermacentor , Doenças do Cão , Animais , Cães , Babesiose/epidemiologia , Áustria/epidemiologia , Estudos Retrospectivos , Doenças do Cão/epidemiologia
16.
Pathogens ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297130

RESUMO

Plasmodium malariae is a neglected human malaria parasite with low parasitemia that often results in the misdiagnosis and underestimation of the actual disease burden of this pathogen. Microscopy is the best diagnostic tool, despite the fact that rapid diagnostic tests (RDTs) are the best surveillance tool for malaria diagnosis in many rural areas for their ease of use in elimination settings. For parasite antigen detection other than P. falciparum, RDTs depend on essential glycolytic Plasmodium proteins, i.e., Plasmodium lactate dehydrogenase (pLDH) and Plasmodium aldolase (pAldo) antigens. There is a lack of species-specific test kits for P. malariae, and overall, its rapid antigenic test accuracy is questionable. False negative results can accelerate the burden of asymptomatic malaria infection and transmission. Here, we report a case of a malaria patient in Bangladesh infected with P. malariae who tested negative on pLDH and pAldo based RDTs. This case provides useful information for health providers to be aware of possible RDT failure and also for the future development of analytically sensitive test kits for P. malariae.

17.
Int J Parasitol Parasites Wildl ; 19: 128-137, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36119442

RESUMO

European wildcats (Felis silvestris silvestris) have not been investigated in large numbers for blood-associated pathogens in Germany, because wildcats, being a protected species, may not be hunted, and the collection of samples is therefore difficult. Thus, spleen tissue and whole blood from 96 wildcats from Germany found as roadkill or dead from other causes in the years 1998-2020 were examined for the prevalence of blood associated pathogens using molecular genetic tools. PCR was used to screen for haemotrophic Mycoplasma spp., Hepatozoon spp., Cytauxzoon spp., Bartonella spp., Filarioidea, Anaplasmataceae, and Rickettsiales, and positive samples were subsequently sequenced. Phylogenetic analyses were performed for Mycoplasma spp. and Hepatozoon spp. by calculating phylogenetic trees and DNA haplotype networks. The following pathogens were found: Candidatus Mycoplasma haematominutum (7/96), Mycoplasma ovis (1/96), Hepatozoon silvestris (34/96), Hepatozoon felis (6/96), Cytauxzoon europaeus (45/96), and Bartonella spp. (3/96). This study elucidates the prevalence of blood-associated pathogens in wildcats from Germany.

18.
Wien Klin Wochenschr ; 134(13-14): 511-515, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35723752

RESUMO

BACKGROUND: Dermatitis linearis is a toxic skin lesion caused by contact with certain beetles of the genus Paederus (Coleoptera: Staphylinidae). Dermatitis linearis outbreaks have been described mainly in tropical and subtropical regions, but so far not in Central Europe, and are considered an emerging public health concern potentially associated with climate change. MATERIAL AND METHODS: Following diagnosis of dermatitis linearis in a cluster of six adults and one child with reported exposure to beetles with morphological characteristics of Paederus species at a recreational public open-air bath at Lake Neusiedl (Illmitz, Burgenland, Austria), we performed on-site inspection and installed light and pitfall traps. Collected beetle specimens of the genus Paederus were classified using morphological characteristics and DNA barcoding. RESULTS: A total of 32 Paederus beetles were collected using an aspirator (n = 2) and light traps (n = 30). No individuals of the genus Paederus were captured with the pitfall traps. Morphological analyses identified them as members of the Paederus balcanicus species, which was confirmed by genetic specification of four arbitrarily chosen individuals. Dermatitis linearis lesions were treated with topical steroids and healed but partly leaving scars and hyperpigmentation, over the course of a few weeks in all affected persons. CONCLUSION: We report for the first time (a) an outbreak of dermatitis linearis associated with exposure to autochthonous Paederus species in Austria, and (b) that contact to the species Paederus balcanicus may cause dermatitis linearis in humans. Adequate measures should be taken to prevent dermatitis linearis outbreaks in areas with resident Paederus occurrence.


Assuntos
Besouros , Dermatite , Adulto , Animais , Áustria/epidemiologia , Criança , Dermatite/epidemiologia , Surtos de Doenças , Europa (Continente) , Humanos
19.
Microorganisms ; 10(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35630388

RESUMO

There is now considerable evidence that in Europe, babesiosis is an emerging infectious disease, with some of the causative species spreading as a consequence of the increasing range of their tick vector hosts. In this review, we summarize both the historic records and recent findings on the occurrence and incidence of babesiosis in 20 European countries located in southeastern Europe (Bosnia and Herzegovina, Croatia, and Serbia), central Europe (Austria, the Czech Republic, Germany, Hungary, Luxembourg, Poland, Slovakia, Slovenia, and Switzerland), and northern and northeastern Europe (Lithuania, Latvia, Estonia, Iceland, Denmark, Finland, Sweden, and Norway), identified in humans and selected species of domesticated animals (cats, dogs, horses, and cattle). Recorded cases of human babesiosis are still rare, but their number is expected to rise in the coming years. This is because of the widespread and longer seasonal activity of Ixodes ricinus as a result of climate change and because of the more extensive use of better molecular diagnostic methods. Bovine babesiosis has a re-emerging potential because of the likely loss of herd immunity, while canine babesiosis is rapidly expanding in central and northeastern Europe, its occurrence correlating with the rapid, successful expansion of the ornate dog tick (Dermacentor reticulatus) populations in Europe. Taken together, our analysis of the available reports shows clear evidence of an increasing annual incidence of babesiosis across Europe in both humans and animals that is changing in line with similar increases in the incidence of other tick-borne diseases. This situation is of major concern, and we recommend more extensive and frequent, standardized monitoring using a "One Health" approach.

20.
Pathogens ; 11(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35631026

RESUMO

Vector-borne diseases play a major role in human and veterinary medicine worldwide. A previous study detected asymptomatic vector-borne pathogens in military working dogs stationed at a military base in eastern Austria, and a follow-up survey of potential arthropod vectors was conducted in spring 2019 and 2020 in the vicinity of the base to evaluate the presence of vectors and their carrier status for a range of canine and zoonotic pathogens. A total of 1324 ticks (nymphs and adults of Ixodes ricinus, comprising 92.9% of the collected specimens, and adults of Haemaphysalis inermis, a tick previously only rarely described in Austria, Haemaphysalis concinna, and Dermacentor reticulatus) were collected by flagging. In 44.1% (125/284) of all pools (n = 284), one infectious agent was found; in 27.8% (79/284) and in 1.1% (3/284), two and three different agents, respectively, could be identified. Overall, 72.9% of the pools contained at least one pathogen (Borrelia spp., Rickettsia spp., Bartonella spp., and Babesia microti). Borrelia mijamotoi, B. lustinaniae, and B. microti were previously only described in single cases in Austria. Mosquitoes were collected with BG-Sentinel traps monthly during the summer of 2019. A total of 71 individuals from 11 species were collected. No filarioid DNA was detected in the mosquito sample pools, although Dirofilaria repens had been present in the dogs from the military site. In conclusion, vector surveillance should be combined with the surveillance of an exposed population whenever possible to estimate the infection risks for dogs and their handlers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA