Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bull Entomol Res ; 114(1): 149-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38268111

RESUMO

Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae), the cactus moth, is native to South America with a widespread distribution in Argentina. The larvae consume the interior of Opuntia spp. (Cactaceae) plants. The moth was used as a biocontrol agent against invasive non-native Opuntia spp. in many countries around the world. The cactus moth arrived unintentionally in Florida, USA, expanded its range and threatened Opuntia-based agriculture and natural ecosystems in southern North America. The insect is also a pest of cultivated O. ficus-indica L. in Argentina. An endemic South American parasitoid, Goniozus legneri Gordth (Hymenoptera: Bethylidae), is used in inundative biological control programmes against lepidopteran pests. The goal of this work was to evaluate G. legneri as a biocontrol agent to be used in inundative releases against C. cactorum. Mortality of C. cactorum by G. legneri was assessed at different spatial scales, as well as the interactions with Apanteles opuntiarum Martínez & Berta (Hymenoptera: Braconidae), a common Argentine natural enemy of C. cactorum. The ability of G. legneri to paralyse, parasitise and kill C. cactorum was confirmed. The paralysis inflicted on C. cactorum larvae reduced larval damage to the plants by 85%. Using two parasitoid species increased the mortality of C. cactorum larvae, but it was highly dependent on the order of their arrival. The combined mortality caused by both parasitoids was higher than a single one, in particular when G. legneri arrived first (56 ± 1%), suggesting asymmetric competition due to the preference of G. legneri attacking previously parasitised larvae. Goniozus legneri has potential as an inundative biocontrol agent of C. cactorum, but its interaction with the classical biocontrol agent A. opuntiarum needs to be considered.


Assuntos
Himenópteros , Mariposas , Opuntia , Animais , Ecossistema , Larva , Controle Biológico de Vetores
2.
Mol Ecol ; 31(1): 356-371, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662480

RESUMO

Surveys of patterns of genetic variation in natural sympatric and allopatric populations of recently diverged species are necessary to understand the processes driving intra- and interspecific diversification. The South American moths Cactoblastis cactorum, Cactoblastis doddi and Cactoblastis bucyrus are specialized in the use of cacti as host plants. These species have partially different geographic ranges and differ in patterns of host plant use. However, there are areas that overlap, particularly, in northwestern Argentina, where they are sympatric. Using a combination of genome-wide SNPs and mitochondrial data we assessed intra and interspecific genetic variation and investigated the relative roles of geography and host plants on genetic divergence. We also searched for genetic footprints of hybridization between species. We identified three well delimited species and detected signs of hybridization in the area of sympatry. Our results supported a hypothetical scenario of allopatric speciation in the generalist C. cactorum and genetic interchange during secondary geographic contact with the pair of specialists C. bucyrus and C. doddi that probably speciated sympatrically. In both cases, adaptation to new host plants probably played an important role in speciation. The results also suggested the interplay of geography and host plant use as drivers of divergence and limiting gene flow at intra and interspecific levels.


Assuntos
Mariposas , Simpatria , Animais , Fluxo Gênico , Especiação Genética , Genômica , Hibridização Genética , Mariposas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA