Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Lipids Health Dis ; 23(1): 197, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926753

RESUMO

BACKGROUND: Lipids, including phospholipids and bile acids, exert various signaling effects and are thought to contribute to the development of coronary artery disease (CAD). Here, we aimed to compare lipidomic and bile acid profiles in the blood of patients with and without CAD stratified by sex. METHODS: From 2015 to 2022, 3,012 patients who underwent coronary angiography were recruited in the INTERCATH cohort. From the overall cohort, subgroups were defined using patient characteristics such as CAD vs. no CAD, 1st vs. 3rd tertile of LDL-c, and female vs. male sex. Hereafter, a matching algorithm based on age, BMI, hypertension status, diabetes mellitus status, smoking status, the Mediterranean diet score, and the intake of statins, triglycerides, HDL-c and hs-CRP in a 1:1 ratio was implemented. Lipidomic analyses of stored blood samples using the Lipidyzer platform (SCIEX) and bile acid analysis using liquid chromatography with tandem mass spectrometry (LC‒MS/MS) were carried out. RESULTS: A total of 177 matched individuals were analyzed; the median ages were 73.5 years (25th and 75th percentile: 64.1, 78.2) and 71.9 years (65.7, 77.2) for females and males with CAD, respectively, and 67.6 years (58.3, 75.3) and 69.2 years (59.8, 76.8) for females and males without CAD, respectively. Further baseline characteristics, including cardiovascular risk factors, were balanced between the groups. Women with CAD had decreased levels of phosphatidylcholine and diacylglycerol, while no differences in bile acid profiles were detected in comparison to those of female patients without CAD. In contrast, in male patients with CAD, decreased concentrations of the secondary bile acid species glycolithocholic and lithocholic acid, as well as altered levels of specific lipids, were detected compared to those in males without CAD. Notably, male patients with low LDL-c and CAD had significantly greater concentrations of various phospholipid species, particularly plasmalogens, compared to those in high LDL-c subgroup. CONCLUSIONS: We present hypothesis-generating data on sex-specific lipidomic patterns and bile acid profiles in CAD patients. The data suggest that altered lipid and bile acid composition might contribute to CAD development and/or progression, helping to understand the different disease trajectories of CAD in women and men. REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT04936438 , Unique identifier: NCT04936438.


Assuntos
Ácidos e Sais Biliares , Doença da Artéria Coronariana , Lipidômica , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ácidos e Sais Biliares/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Doença da Artéria Coronariana/sangue , Caracteres Sexuais , Fatores Sexuais , Espectrometria de Massas em Tandem , Triglicerídeos/sangue , Estudos de Coortes
2.
Nat Commun ; 15(1): 45, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167725

RESUMO

Dietary polyunsaturated fatty acids (PUFA) are increasingly recognized for their health benefits, whereas a high production of endogenous fatty acids - a process called de novo lipogenesis (DNL) - is closely linked to metabolic diseases. Determinants of PUFA incorporation into complex lipids are insufficiently understood and may influence the onset and progression of metabolic diseases. Here we show that fatty acid synthase (FASN), the key enzyme of DNL, critically determines the use of dietary PUFA in mice and humans. Moreover, the combination of FASN inhibition and PUFA-supplementation decreases liver triacylglycerols (TAG) in mice fed with high-fat diet. Mechanistically, FASN inhibition causes higher PUFA uptake via the lysophosphatidylcholine transporter MFSD2A, and a diacylglycerol O-acyltransferase 2 (DGAT2)-dependent incorporation of PUFA into TAG. Overall, the outcome of PUFA supplementation may depend on the degree of endogenous DNL and combining PUFA supplementation and FASN inhibition might be a promising approach to target metabolic disease.


Assuntos
Ácidos Graxos Ômega-3 , Doenças Metabólicas , Camundongos , Humanos , Animais , Lipogênese , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados , Triglicerídeos/metabolismo , Ácidos Graxos , Dieta Hiperlipídica/efeitos adversos
3.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175533

RESUMO

Ultrashort pulse infrared lasers can simultaneously sample and homogenize biological tissue using desorption by impulsive vibrational excitation (DIVE). With growing attention on alterations in lipid metabolism in malignant disease, mass spectrometry (MS)-based lipidomic analysis has become an emerging topic in cancer research. In this pilot study, we investigated the feasibility of tissue sampling with a nanosecond infrared laser (NIRL) for the subsequent lipidomic analysis of oropharyngeal tissues, and its potential to discriminate oropharyngeal squamous cell carcinoma (OPSCC) from non-tumorous oropharyngeal tissue. Eleven fresh frozen oropharyngeal tissue samples were ablated. The produced aerosols were collected by a glass fiber filter, and the lipidomes were analyzed with mass spectrometry. Data was evaluated by principal component analysis and Welch's t-tests. Lipid profiles comprised 13 lipid classes and up to 755 lipid species. We found significant inter- and intrapatient alterations in lipid profiles for tumor and non-tumor samples (p-value < 0.05, two-fold difference). Thus, NIRL tissue sampling with consecutive MS lipidomic analysis is a feasible and promising approach for the differentiation of OPSCC and non-tumorous oropharyngeal tissue and may provide new insights into lipid composition alterations in OPSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Lipidômica , Projetos Piloto , Neoplasias Orofaríngeas/patologia , Espectrometria de Massas , Carcinoma de Células Escamosas de Cabeça e Pescoço , Lipídeos/análise , Lasers
4.
Hepatology ; 78(5): 1418-1432, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053190

RESUMO

BACKGROUND AND AIMS: The assembly and secretion of VLDL from the liver, a pathway that affects hepatic and plasma lipids, remains incompletely understood. We set out to identify players in the VLDL biogenesis pathway by identifying genes that are co-expressed with the MTTP gene that encodes for microsomal triglyceride transfer protein, key to the lipidation of apolipoprotein B, the core protein of VLDL. Using human and murine transcriptomic data sets, we identified small leucine-rich protein 1 ( SMLR1 ), encoding for small leucine-rich protein 1, a protein of unknown function that is exclusively expressed in liver and small intestine. APPROACH AND RESULTS: To assess the role of SMLR1 in the liver, we used somatic CRISPR/CRISPR-associated protein 9 gene editing to silence murine Smlr1 in hepatocytes ( Smlr1 -LKO). When fed a chow diet, male and female mice show hepatic steatosis, reduced plasma apolipoprotein B and triglycerides, and reduced VLDL secretion without affecting microsomal triglyceride transfer protein activity. Immunofluorescence studies show that SMLR1 is in the endoplasmic reticulum and Cis-Golgi complex. The loss of hepatic SMLR1 in female mice protects against diet-induced hyperlipidemia and atherosclerosis but causes NASH. On a high-fat, high-cholesterol diet, insulin and glucose tolerance tests did not reveal differences in male Smlr1 -LKO mice versus controls. CONCLUSIONS: We propose a role for SMLR1 in the trafficking of VLDL from the endoplasmic reticulum to the Cis-Golgi complex. While this study uncovers SMLR1 as a player in the VLDL assembly, trafficking, and secretion pathway, it also shows that NASH can occur with undisturbed glucose homeostasis and atheroprotection.


Assuntos
Aterosclerose , Lipoproteínas VLDL , Hepatopatia Gordurosa não Alcoólica , Proteoglicanos Pequenos Ricos em Leucina , Animais , Feminino , Humanos , Masculino , Camundongos , Apolipoproteínas B/sangue , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Leucina , Lipoproteínas VLDL/biossíntese , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/genética , Proteoglicanos Pequenos Ricos em Leucina/metabolismo , Triglicerídeos/sangue
5.
Neuro Oncol ; 24(12): 2078-2090, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35551407

RESUMO

BACKGROUND: Extracellular vesicles (EVs) play an important role in cell-cell communication, and tumor-derived EVs circulating in patient blood can serve as biomarkers. Here, we investigated the potential role of plasma EVs in meningioma patients for tumor detection and determined whether EVs secreted by meningioma cells reflect epigenetic, genomic, and proteomic alterations of original tumors. METHODS: EV concentrations were quantified in patient plasma (n = 46). Short-term meningioma cultures were established (n = 26) and secreted EVs were isolated. Methylation and copy number profiling was performed using 850k arrays, and mutations were identified by targeted gene panel sequencing. Differential quantitative mass spectrometry was employed for proteomic analysis. RESULTS: Levels of circulating EVs were elevated in meningioma patients compared to healthy individuals, and the plasma EV concentration correlated with malignancy grade and extent of peritumoral edema. Postoperatively, EV counts dropped to normal levels, and the magnitude of the postoperative decrease was associated with extent of tumor resection. Methylation profiling of EV-DNA allowed correct tumor classification as meningioma in all investigated cases, and accurate methylation subclass assignment in almost all cases. Copy number variations present in tumors, as well as tumor-specific mutations were faithfully reflected in meningioma EV-DNA. Proteomic EV profiling did not permit original tumor identification but revealed tumor-associated proteins that could potentially be utilized to enrich meningioma EVs from biofluids. CONCLUSIONS: Elevated EV levels in meningioma patient plasma could aid in tumor diagnosis and assessment of treatment response. Meningioma EV-DNA mirrors genetic and epigenetic tumor alterations and facilitates molecular tumor classification.


Assuntos
Vesículas Extracelulares , Neoplasias Meníngeas , Meningioma , Humanos , Proteômica/métodos , Meningioma/diagnóstico , Meningioma/genética , Meningioma/metabolismo , Variações do Número de Cópias de DNA , Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo
6.
Front Physiol ; 13: 859671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422714

RESUMO

Cold-induced activation of brown adipose tissue (BAT) has an important impact on systemic lipoprotein metabolism by accelerating the processing of circulating triglyceride-rich lipoproteins (TRL). Lipoprotein lipase (LPL) expressed by adipocytes is translocated via endothelial to the capillary lumen, where LPL acts as the central enzyme for the vascular lipoprotein processing. Based on preliminary data showing that LPL is not only expressed in adipocytes but also in endothelial cells of cold-activated BAT, we aimed to dissect the relevance of endothelial versus adipocyte LPL for lipid and energy metabolism in the context of adaptive thermogenesis. By metabolic studies we found that cold-induced triglyceride uptake into BAT, lipoprotein disposal, glucose uptake and adaptive thermogenesis were not impaired in mice lacking Lpl exclusively in endothelial cells. This finding may be explained by a compensatory upregulation in the expression of adipocyte-derived Lpl and endothelial lipase (Lipg).

7.
Metabolites ; 12(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35208244

RESUMO

Short Chain Fatty Acids (SCFAs) are produced by the gut microbiota and are present in varying concentrations in the intestinal lumen, in feces but also in the circulatory system. By interacting with different cell types in the body, they have a great impact on host metabolism and their exact quantification is indispensable. Here, we present a derivatization-free method for the gas chromatography mass spectrometry (GC-MS) based quantification of SCFAs in plasma, feces, cecum, liver and adipose tissue. SCFAs were extracted using ethanol and concentrated by alkaline vacuum centrifugation. To allow volatility for separation by GC, samples were acidified with succinic acid. Analytes were detected in selected ion monitoring (SIM) mode and quantified using deuterated internal standards and external calibration curves. Method validation rendered excellent linearity (R2 > 0.99 for most analytes), good recovery rates (95-117%), and good reproducibility (RSD: 1-4.5%). Matrix effects were ruled out in plasma, feces, cecum, liver and fat tissues where most abundant SCFAs were detected and accurately quantified. Finally, applicability of the method was assessed using samples derived from conventionally raised versus germ-free mice or mice treated with antibiotics. Altogether, a reliable, fast, derivatization-free GC-MS method for the quantification of SCFAs in different biological matrices was developed allowing for the study of the (patho)physiological role of SCFAs in metabolic health.

8.
Am J Physiol Endocrinol Metab ; 322(2): E85-E100, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927460

RESUMO

Activation of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) upon cold stimulation leads to substantial increase in energy expenditure to defend body temperature. Increases in energy expenditure after a high-caloric food intake, termed diet-induced thermogenesis, are also attributed to BAT. These properties render BAT a potential target to combat diet-induced obesity. However, studies investigating the role of UCP1 to protect against diet-induced obesity are controversial and rely on the phenotyping of a single constitutive UCP1-knockout model. To address this issue, we generated a novel UCP1-knockout model by Cre-mediated deletion of exon 2 in the UCP1 gene. We studied the effect of constitutive UCP1 knockout on metabolism and the development of diet-induced obesity. UCP1 knockout and wild-type mice were housed at 30°C and fed a control diet for 4 wk followed by 8 wk of high-fat diet. Body weight and food intake were monitored continuously over the course of the study, and indirect calorimetry was used to determine energy expenditure during both feeding periods. Based on Western blot analysis, thermal imaging and noradrenaline test, we confirmed the lack of functional UCP1 in knockout mice. However, body weight gain, food intake, and energy expenditure were not affected by loss of UCP1 function during both feeding periods. We introduce a novel UCP1-KO mouse enabling the generation of conditional UCP1-knockout mice to scrutinize the contribution of UCP1 to energy metabolism in different cell types or life stages. Our results demonstrate that UCP1 does not protect against diet-induced obesity at thermoneutrality.NEW & NOTEWORTHY We provide evidence that the abundance of UCP1 does not influence energy metabolism at thermoneutrality studying a novel Cre-mediated UCP1-KO mouse model. This model will be a foundation for a better understanding of the contribution of UCP1 in different cell types or life stages to energy metabolism.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Obesidade/metabolismo , Temperatura , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Calorimetria Indireta/métodos , Suscetibilidade a Doenças/metabolismo , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Termogênese/genética , Proteína Desacopladora 1/genética , Aumento de Peso/genética
9.
Neuro Oncol ; 23(7): 1087-1099, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508126

RESUMO

BACKGROUND: Genome-wide DNA methylation profiling has recently been developed into a tool that allows tumor classification in central nervous system tumors. Extracellular vesicles (EVs) are released by tumor cells and contain high molecular weight DNA, rendering EVs a potential biomarker source to identify tumor subgroups, stratify patients and monitor therapy by liquid biopsy. We investigated whether the DNA in glioblastoma cell-derived EVs reflects genome-wide tumor methylation and mutational profiles and allows noninvasive tumor subtype classification. METHODS: DNA was isolated from EVs secreted by glioblastoma cells as well as from matching cultured cells and tumors. EV-DNA was localized and quantified by direct stochastic optical reconstruction microscopy. Methylation and copy number profiling was performed using 850k arrays. Mutations were identified by targeted gene panel sequencing. Proteins were differentially quantified by mass spectrometric proteomics. RESULTS: Genome-wide methylation profiling of glioblastoma-derived EVs correctly identified the methylation class of the parental cells and original tumors, including the MGMT promoter methylation status. Tumor-specific mutations and copy number variations (CNV) were detected in EV-DNA with high accuracy. Different EV isolation techniques did not affect the methylation profiling and CNV results. DNA was present inside EVs and on the EV surface. Proteome analysis did not allow specific tumor identification or classification but identified tumor-associated proteins that could potentially be useful for enriching tumor-derived circulating EVs from biofluids. CONCLUSIONS: This study provides proof of principle that EV-DNA reflects the genome-wide methylation, CNV, and mutational status of glioblastoma cells and enables their molecular classification.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , DNA/metabolismo , Variações do Número de Cópias de DNA , Metilação de DNA , Vesículas Extracelulares/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Metilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA