Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Lab Chip ; 23(12): 2854-2865, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37255014

RESUMO

Droplet microfluidics has become a powerful tool in life sciences, underlying digital assays, single-cell sequencing or directed evolution, and it is making foray in physical sciences as well. Imaging and incubation of droplets are crucial, yet they are encumbered by the poor optical, thermal and mechanical properties of PDMS, a material commonly used in microfluidics labs. Here we show that Si is an ideal material for droplet chambers. Si chambers pack droplets in a crystalline and immobile monolayer, are immune to evaporation or sagging, boost the number of collected photons, and tightly control the temperature field sensed by droplets. We use the mechanical and optical benefits of Si chambers to image ≈1 million of droplets from a multiplexed digital assay - with an acquisition rate similar to the best in-line methods. Lastly, we demonstrate their applicability with a demanding assay that maps the thermal dependence of Michaelis-Menten constants with an array of ≈150 000 droplets. The design of the Si chambers is streamlined to avoid complicated fabrication and improve reproducibility, which makes Si a complementary material to PDMS in the toolbox of droplet microfluidics.

2.
PLoS One ; 18(4): e0283773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023052

RESUMO

Mouse spermatogenesis, from spermatogonial stem cell proliferation to sperm formation, can be reproduced in vitro by culturing testis tissue masses of neonatal mice. However, it remains to be determined whether this method is also applicable when testis tissues are further divided into tiny fragments, such as segments of the seminiferous tubule (ST), a minimal anatomical unit for spermatogenesis. In this study, we investigated this issue using the testis of an Acrosin-GFP/Histone H3.3-mCherry (Acr/H3) double-transgenic mouse and monitored the expression of GFP and mCherry as indicators of spermatogenic progression. Initially, we noticed that the cut and isolated stretches of ST shrunk rapidly and conglomerated. We therefore maintained the isolation of STs in two ways: segmental isolation without truncation or embedding in soft agarose. In both cases, GFP expression was observed by fluorescence microscopy. By whole-mount immunochemical staining, meiotic spermatocytes and round and elongating spermatids were identified as Sycp3-, crescent-form GFP-, and mCherry-positive cells, respectively. Although the efficiency was significantly lower than that with tissue mass culture, we clearly showed that spermatogenesis can be induced up to the elongating spermatid stage even when the STs were cut into short segments and cultured in isolation. In addition, we demonstrated that lowered oxygen tension was favorable for spermatogenesis both for meiotic progression and for producing elongating spermatids in isolated STs. Culturing isolated STs rather than tissue masses is advantageous for explicitly assessing the various environmental parameters that influence the progression of spermatogenesis.


Assuntos
Sêmen , Espermatogônias , Masculino , Camundongos , Animais , Espermatogônias/metabolismo , Túbulos Seminíferos/metabolismo , Espermatogênese , Testículo/metabolismo , Espermátides/metabolismo , Camundongos Transgênicos
3.
Lab Chip ; 23(3): 437-450, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36546862

RESUMO

Podocytes, localized in the glomerulus, are a prognostic factor of proteinuria in kidney disease and are exposed to distinct physiological stimuli from basal to apical filtration flow. Research studies on drug discovery and disease modeling for glomerulopathy have developed a glomerulus-on-a-chip and studied podocyte mechanobiology to realize alternative methods to animal experiments. However, the effect of filtration stimulus on podocytes has remained unclear. Herein, we report the successful development of a user-friendly filtration culture device and system that can precisely control the filtration flow using air pressure control by incorporating a commercially available culture insert. It allows mouse podocytes to be cultured under filtration conditions for three days with a guarantee of maintaining the integrity of the podocyte layer. Using our system, this study demonstrated that podocyte damage caused by hyperfiltration resulting from glomerular hypertension, a common pathophysiology of many glomerulopathies, was successfully recapitulated and that filtration stimulus promotes the maturation of podocytes in terms of their morphology and gene expression. Furthermore, we demonstrated that filtration stimulus induced different drug responsiveness in podocytes than those seen under static conditions, and that the difference in drug responsiveness was dependent on the pharmacological mechanism. Overall, this study has revealed differentiating and pharmacodynamic properties of filtration stimulus and brings new insights into the research field of podocyte mechanobiology towards the realization of glomerulus-on-a-chip.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Nefropatias , Podócitos , Camundongos , Animais , Podócitos/metabolismo , Glomérulos Renais/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Dispositivos Lab-On-A-Chip
4.
Sci Rep ; 12(1): 15309, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097044

RESUMO

When biologically interpretation of the data obtained from the single-cell RNA sequencing (scRNA-seq) analysis is attempted, additional information on the location of the single cells, behavior of the surrounding cells, and the microenvironment they generate, would be very important. We developed an inexpensive, high throughput application while preserving spatial organization, named "semibulk RNA-seq" (sbRNA-seq). We utilized a microfluidic device specifically designed for the experiments to encapsulate both a barcoded bead and a cell aggregate (a semibulk) into a single droplet. Using sbRNA-seq, we firstly analyzed mouse kidney specimens. In the mouse model, we could associate the pathological information with the gene expression information. We validated the results using spatial transcriptome analysis and found them highly consistent. When we applied the sbRNA-seq analysis to the human breast cancer specimens, we identified spatial interactions between a particular population of immune cells and that of cancer-associated fibroblast cells, which were not precisely represented solely by the single-cell analysis. Semibulk analysis may provide a convenient and versatile method, compared to a standard spatial transcriptome sequencing platform, to associate spatial information with transcriptome information.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Animais , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos , RNA-Seq , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma
5.
Biochem Biophys Res Commun ; 626: 72-78, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35973377

RESUMO

Poliovirus (PV) can spread through neural pathway to the central nervous system and replicates in motor neurons, which leads to poliomyelitis. Enterovirus 71 (EV71), which is closely related to PV, is one of the causative agents of hand-foot-and-mouth disease and can cause severe neurological diseases similar to poliomyelitis. Since PV is similar to EV71 in its motor neurotoxicity, we tried to understand if the results obtained with PV are of general applicability to EV71 and other viruses with similar characteristics. Using microfluidic devices, we demonstrated that both PV capsid and the PV genome undergo axonal retrograde transport with human PV receptor (hPVR), and the transported virus replicated in the soma of hPVR-expressing motor neurons. Similar to PV in hPVR-transgenic (Tg) mice, neural pathway ensuring spreading of EV71 has been shown in adult human scavenger receptor class B, member 2 (hSCARB2)-Tg mice. We have validated this finding in microfluidic devices by showing that EV71 is retrogradely transported together with hSCARB2 to the cell body where it replicates in an hSCARB2-dependent manner.


Assuntos
Enterovirus Humano A , Enterovirus , Poliomielite , Poliovirus , Animais , Transporte Axonal/fisiologia , Enterovirus Humano A/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores , Poliovirus/metabolismo
6.
Lab Chip ; 22(16): 3000-3007, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35730687

RESUMO

The importance of circulating tumor cells (CTCs) as biomarkers has been greatly increased for early diagnosis and detection of cancer metastases. Along with a single form of CTCs, CTC clusters have recently attracted much attention due to their characteristics, such as suppression of apoptosis and survival from immune responses with high metastatic potential. Thus, it is highly necessary to investigate not only single cells but clustered cells at the same time to perform precise analysis of the current cancer state and develop suitable treatment. However, no cancer marker-free microfluidic devices have been realized to trap single cells and clusters at the same time in a single device yet. In this paper, we introduced a novel microfluidic device utilizing a microwell-on-electrode (MOE) array to realize simultaneous trapping of a single cell and clustered cells at a single cell/cluster level. Cell-sized microwells fabricated on interdigitated electrodes efficiently arrayed single cells with high trapping efficiency and single-cell occupancy (more than 90%) using dielectrophoresis (DEP). This high single cell trapping performance of MOE allows arraying of single clusters by trapping one of the cells that constitute a cluster. The feasibility of the MOE device for simultaneous arraying of single cancer cells and clusters was demonstrated by trapping a mixture of single cancer cells and clusters and measuring the size distribution of trapped clusters, which was almost identical with that of introduced cell population. Our work demonstrated that the developed MOE device can be one of the promising methods for trapping single cancer cells as well as clusters on a single device for cancer diagnosis and performing further analyses at a single cell/cluster level.


Assuntos
Dispositivos Lab-On-A-Chip , Células Neoplásicas Circulantes , Apoptose , Contagem de Células , Eletrodos , Humanos , Células Neoplásicas Circulantes/patologia
7.
Anal Chem ; 94(21): 7594-7600, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35578745

RESUMO

Circulating cell-free DNA (cfDNA) has been implicated as an important biomarker and has been intensively studied for "liquid biopsy" applications in cancer diagnostics. Owing to its small fragment size and its low concentration in circulation, cfDNA extraction and purification from serum samples are complicated, and the extraction yield affects the precision of subsequent molecular diagnostic tests. Here, we report a novel approach using nitrogen-mustard-coated DNA capture beads (NMD beads) that covalently capture DNA and allow direct subsequent polymerase chain reaction (PCR) amplification from the NMD bead without elusion. The complex DNA extraction and purification processes are not required. To illustrate the diagnostic use of the NMD beads, we detected short DNA fragments (142 bp) that were spiked into fetal bovine serum (as a model serum sample). The spiked DNAs were captured directly from serum samples and detected using real-time PCR at concentrations as low as 10 fg/mL. We anticipate that this DNA capture bead technique has the potential to simplify the preanalytical processes required for cfDNA detection, which could significantly expand the diagnostic applications of liquid biopsy.


Assuntos
Ácidos Nucleicos Livres , Mostardeira , DNA , Mecloretamina , Microesferas , Nitrogênio , Reação em Cadeia da Polimerase em Tempo Real/métodos
8.
Int J Nephrol Renovasc Dis ; 15: 85-101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299832

RESUMO

Glomerulopathy, characterized by a dysfunctional glomerular capillary wall, results in proteinuria, leading to end-stage renal failure and poor clinical outcomes, including renal death and increased overall mortality. Conventional glomerulopathy research, including drug discovery, has mostly relied on animal experiments because in-vitro glomerulus models, capable of evaluating functional selective permeability, was unavailable in conventional in-vitro cell culture systems. However, animal experiments have limitations, including time- and cost-consuming, multi-organ effects, unstable reproducibility, inter-species reliability, and the social situation in the EU and US, where animal experiments have been discouraged. Glomerulus-on-a-chip, a new in-vitro organ model, has recently been developed in the field of organ-on-a-chip research based on microfluidic device technology. In the glomerulus-on-a-chip, the podocytes and endothelial cells are co-cultured in a microfluidic device with physical stimuli that mimic the physiological environment to enhance cell function to construct a functional filtration barrier, which can be assessed by permeability assays using fluorescently labeled molecules including inulin and albumin. A combination of this glomerulus-on-a chip technology with the culture technology to induce podocytes and endothelial cells from the human pluripotent stem cells could provide an alternative organ model and solve the issue of animal experiments. Additionally, previous experiments have verified the difference in the leakage of albumin using differentiated podocytes derived from patients with Alport syndrome, such that it could be applied to intractable hereditary glomerulopathy models. In this review, we provide an overview of the features of the existing glomerulus-on-a-chip systems, focusing on how they can address selective permeability verification tests, and the challenges they involved. We finally discuss the future approaches that should be developed for solving those challenges and allow further improvement of glomerulus-on-a-chip technologies.

9.
Biochem Biophys Res Commun ; 570: 47-52, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34271436

RESUMO

Formation of processes in podocytes is regarded as the hallmark of maturity and normal physical condition for the cell. There are many accumulated findings about molecular mechanisms that cause retraction of podocyte processes; however, there is little knowledge of the positive mechanisms that promote process formation in vitro, and most previous reports about this topic have been limited to low-density cultures. Here, we found that process formation can be induced in 100% confluent cultures of conditionally immortalized podocytes in mouse, rat, and human species by combining serum depletion and Y-27632 ROCK inhibitor supplementation on the scaffold of laminin-521(L521). We noted the cytoskeletal reorganization of the radial extension pattern of vimentin filaments and downregulation of actin stress fiber formation under that condition. We also found that additional standard amount of serum, depletion of ROCK inhibitor, or slight mismatch of the scaffold as laminin-511(L511) hinder process formation. These findings suggest that the combination of reduced serum, podocyte-specific scaffold, and intracellular signaling to reduce the overexpression of ROCK are required factors for process formation.


Assuntos
Técnicas de Cultura de Células/métodos , Extensões da Superfície Celular/metabolismo , Podócitos/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Transformada , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Temperatura Alta , Humanos , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Especificidade da Espécie , Vimentina/metabolismo
10.
Langmuir ; 37(24): 7305-7311, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34110177

RESUMO

This paper reports the development of a real-time monitoring system utilizing the combination of a water-gated organic field-effect transistor (WG-OFET) and a microfluidic chamber for the detection of the herbicide glyphosate (GlyP). For the realization of the real-time sensing with the WG-OFET, the surface of a polymer semiconductor was utilized as a sensing unit. The aqueous solution including the target analyte, which is employed as a gate dielectric of the WG-OFET, flows into a designed microfluidic chamber on the semiconductor layer and the gate electrode. As the sensing mechanism, the WG-OFET-based sensor utilizes the competitive complexation among carboxylate-functionalized polythiophene, a copper(II) (Cu2+) ion, and GlyP. The reversible accumulation and desorption of the positively charged Cu2+ ion on the semiconductor surface induced a change in the electrical double-layer capacitance (EDLC). The optimization of the microfluidic chamber enables a uniform water flow and contributes to real-time quantitative sensing of GlyP at a micromolar level. Thus, this study would lead to practical real-time sensing in water for various fields including environmental assessment.

11.
Small ; 17(29): e2101253, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34121314

RESUMO

Electrochemical microscopy techniques have extended the understanding of surface chemistry to the micrometer and even sub-micrometer level. However, fundamental questions related to charge transport at the solid-electrolyte interface, such as catalytic reactions or operation of individual ion channels, require improved spatial resolutions down to the nanoscale. A prerequisite for single-molecule electrochemical sensitivity is the reliable detection of a few electrons per second, that is, currents in the atto-Ampere (10-18 A) range, 1000 times below today's electrochemical microscopes. This work reports local cyclic voltammetry (CV) measurements at the solid-liquid interface on ferrocene self-assembled monolayer (SAM) with sub-atto-Ampere sensitivity and simultaneous spatial resolution < 80 nm. Such sensitivity is obtained through measurements of the charging of the local faradaic interface capacitance at GHz frequencies. Nanometer-scale details of different molecular organizations with a 19% packing density difference are resolved, with an extremely small dispersion of the molecular electrical properties. This is predicted previously based on weak electrostatic interactions between neighboring redox molecules in a SAM configuration. These results open new perspectives for nano-electrochemistry like the study of quantum mechanical resonance in complex molecules and a wide range of applications from electrochemical catalysis to biophysics.


Assuntos
Elétrons , Nanotecnologia , Capacitância Elétrica , Eletroquímica , Oxirredução
12.
Stem Cell Reports ; 16(6): 1527-1541, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048688

RESUMO

Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable motor neuron (MN) disease. The reasons for selective MN vulnerability in ALS are unknown. Axonal pathology is among the earliest signs of ALS. We searched for novel modulatory genes in human MN axon shortening affected by TARDBP mutations. In transcriptome analysis of RNA present in the axon compartment of human-derived induced pluripotent stem cell (iPSC)-derived MNs, PHOX2B (paired-like homeobox protein 2B) showed lower expression in TARDBP mutant axons, which was consistent with axon qPCR and in situ hybridization. PHOX2B mRNA stability was reduced in TARDBP mutant MNs. Furthermore, PHOX2B knockdown reduced neurite length in human MNs. Finally, phox2b knockdown in zebrafish induced short spinal axons and impaired escape response. PHOX2B is known to be highly express in other types of neurons maintained after ALS progression. Collectively, TARDBP mutations induced loss of axonal resilience, which is an important ALS-related phenotype mediated by PHOX2B downregulation.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Axônios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Proteínas de Homeodomínio/genética , Humanos , Mutação , Fenótipo , Fatores de Transcrição/genética , Transcriptoma
13.
Sci Rep ; 11(1): 3458, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568686

RESUMO

In vitro spermatogenesis (IVS) using air-liquid interphase organ culture method is possible with mouse testis tissues. The same method, however, has been hardly applicable to animals other than mice, only producing no or limited progression of spermatogenesis. In the present study, we challenged IVS of rats with modifications of culture medium, by supplementing chemical substances, including hormones, antioxidants, and lysophospholipids. In addition, reducing oxygen tension by placing tissues in an incubator of lower oxygen concentration and/or applying silicone cover ceiling on top of the tissue were effective for improving the spermatogenic efficiency. Through these modifications of the culture condition, rat spermatogenesis up to round spermatids was maintained over 70 days in the cultured tissue. Present results demonstrated a significant progress in rat IVS, revealing conditions commonly favorable for mice and rats as well as finding rat-specific optimizations. This is an important step towards successful IVS in many animal species, including humans.


Assuntos
Técnicas de Cultura de Órgãos , Espermátides/crescimento & desenvolvimento , Espermatogênese , Animais , Animais Geneticamente Modificados , Antioxidantes , Meios de Cultura , Hormônios , Masculino , Meiose , Oxigênio/análise , Ratos , Espermátides/citologia , Espermatócitos/crescimento & desenvolvimento
14.
Nanomaterials (Basel) ; 11(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499417

RESUMO

Hydrogels are essential in many fields ranging from tissue engineering and drug delivery to food sciences or cosmetics. Hydrogels that respond to specific biomolecular stimuli such as DNA, mRNA, miRNA and small molecules are highly desirable from the perspective of medical applications, however interfacing classical hydrogels with nucleic acids is still challenging. Here were demonstrate the generation of microbeads of DNA hydrogels with droplet microfluidic, and their morphological actuation with DNA strands. Using strand displacement and the specificity of DNA base pairing, we selectively dissolved gel beads, and reversibly changed their size on-the-fly with controlled swelling and shrinking. Lastly, we performed a complex computing primitive-A Winner-Takes-All competition between two populations of gel beads. Overall, these results show that strand responsive DNA gels have tantalizing potentials to enhance and expand traditional hydrogels, in particular for applications in sequencing and drug delivery.

15.
Lab Chip ; 21(1): 55-74, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33300537

RESUMO

The oceans sustain the global environment and diverse ecosystems through a variety of biogeochemical processes and their complex interactions. In order to understand the dynamism of the local or global marine environments, multimodal combined observations must be carried out in situ. On the other hand, instrumentation of in situ measurement techniques enabling biological and/or biochemical combined observations is challenging in aquatic environments, including the ocean, because biochemical flow analyses require a more complex configuration than physicochemical electrode sensors. Despite this technical hurdle, in situ analyzers have been developed to measure the concentrations of seawater contents such as nutrients, trace metals, and biological components. These technologies have been used for cutting-edge ocean observations to elucidate the biogeochemical properties of water mass with a high spatiotemporal resolution. In this context, the contribution of lab-on-a-chip (LoC) technology toward the miniaturization and functional integration of in situ analyzers has been gaining momentum. Due to their mountability, in situ LoC technologies provide ideal instrumentation for underwater analyzers, especially for miniaturized underwater observation platforms. Consequently, the appropriate combination of reliable LoC and underwater technologies is essential to realize practical in situ LoC analyzers suitable for underwater environments, including the deep sea. Moreover, the development of fundamental LoC technologies for underwater analyzers, which operate stably in extreme environments, should also contribute to in situ measurements for public or industrial purposes in harsh environments as well as the exploration of the extraterrestrial frontier.


Assuntos
Ecossistema , Dispositivos Lab-On-A-Chip , Oceanografia , Oceanos e Mares , Tecnologia
16.
J Vis Exp ; (163)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-33044443

RESUMO

A fascicle of axons is one of the major structural motifs observed in the nervous system. Disruption of axon fascicles could cause developmental and neurodegenerative diseases. Although numerous studies of axons have been conducted, our understanding of formation and dysfunction of axon fascicles is still limited due to the lack of robust three-dimensional in vitro models. Here, we describe a step-by-step protocol for the rapid generation of a motor nerve organoid (MNO) from human induced pluripotent stem (iPS) cells in a microfluidic-based tissue culture chip. First, fabrication of chips used for the method is described. From human iPS cells, a motor neuron spheroid (MNS) is formed. Next, the differentiated MNS is transferred into the chip. Thereafter, axons spontaneously grow out of the spheroid and assemble into a fascicle within a microchannel equipped in the chip, which generates an MNO tissue carrying a bundle of axons extended from the spheroid. For the downstream analysis, MNOs can be taken out of the chip to be fixed for morphological analyses or dissected for biochemical analyses, as well as calcium imaging and multi-electrode array recordings. MNOs generated with this protocol can facilitate drug testing and screening and can contribute to understanding of mechanisms underlying development and diseases of axon fascicles.


Assuntos
Neurônios Motores/fisiologia , Organoides/fisiologia , Animais , Cálcio/metabolismo , Diferenciação Celular , Dimetilpolisiloxanos/química , Eletrodos , Compostos de Epóxi/química , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Microfluídica , Polímeros/química , Técnicas de Cultura de Tecidos
17.
Micromachines (Basel) ; 11(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971889

RESUMO

DNA nanotechnology offers a fine control over biochemistry by programming chemical reactions in DNA templates. Coupled to microfluidics, it has enabled DNA-based reaction-diffusion microsystems with advanced spatio-temporal dynamics such as traveling waves. The Finite Element Method (FEM) is a standard tool to simulate the physics of such systems where boundary conditions play a crucial role. However, a fine discretization in time and space is required for complex geometries (like sharp corners) and highly nonlinear chemistry. Graphical Processing Units (GPUs) are increasingly used to speed up scientific computing, but their application to accelerate simulations of reaction-diffusion in DNA nanotechnology has been little investigated. Here we study reaction-diffusion equations (a DNA-based predator-prey system) in a tortuous geometry (a maze), which was shown experimentally to generate subtle geometric effects. We solve the partial differential equations on a GPU, demonstrating a speedup of ∼100 over the same resolution on a 20 cores CPU.

18.
Sci Rep ; 10(1): 12678, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728030

RESUMO

Transistor biosensors are mass-fabrication-compatible devices of interest for point of care diagnosis as well as molecular interaction studies. While the actual transistor gates in processors reach the sub-10 nm range for optimum integration and power consumption, studies on design rules for the signal-to-noise ratio (S/N) optimization in transistor-based biosensors have been so far restricted to 1 µm2 device gate area, a range where the discrete nature of the defects can be neglected. In this study, which combines experiments and theoretical analysis at both numerical and analytical levels, we extend such investigation to the nanometer range and highlight the effect of doping type as well as the noise suppression opportunities offered at this scale. In particular, we show that, when a single trap is active near the conductive channel, the noise can be suppressed even beyond the thermal limit by monitoring the trap occupancy probability in an approach analog to the stochastic resonance effect used in biological systems.

19.
Biomicrofluidics ; 14(4): 044102, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32665806

RESUMO

Primary cilia of tubular cells are sensory organelles. Bending of the primary cilia with shear stress from urinary flow results in the elevation of intracellular calcium levels and activation of signaling pathways that maintain kidney function. Elongation of primary cilia is reported to occur due to oxidative stress, which is a major cause of ischemia-reperfusion injury and is accompanied by decreased kidney function. However, in the context of diminished kidney function, this elongation is yet to be investigated. In this study, we developed a new microfluidic device to monitor changes in the intracellular calcium levels while modulating shear stress on the cilia under different degrees of oxidative stress. The microfluidic device was designed to expose even shear stress in the observed area while supplying drugs in four different stepwise concentrations. The results showed that primary cilia were elongated by hydrogen peroxide, which induces oxidative stress. It was also observed that the elongated primary cilia were more sensitive to shear stress than those with normal morphology. This microfluidic device could, thus, be useful in the analysis of the morphology of the primary cilia, under low perfusion conditions.

20.
Reprod Med Biol ; 18(4): 362-369, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31607796

RESUMO

PURPOSE: Mouse in vitro spermatogenesis is possible with classical organ culture methods, by placing the testis tissue at the interphase between culture medium and air. In this condition, however, a tissue piece tends to round up to be compact, whose central region suffers from shortage of nutrients and oxygen. In this study, the authors improved the culture condition by spreading each tissue thin and flat, by which they were able to get better access to the oxygen and nutrients. METHODS: Immature mouse testis tissues placed on agarose gel block were forced to spread flat by covering with a polydimethylsiloxane (PDMS) ceiling chip (PC chip). They were then cultured for weeks and evaluated by the transgene expression of Acr-Gfp, which reflects the progression of spermatogenesis. RESULTS: Testis tissues covered with PC chip initiated and maintained spermatogenesis in its wider region than those without PC chip covering. Flow cytometric analysis demonstrated that the PC method yielded more numerous meiotic germ cells than those without PC. Immunohistochemical examination confirmed the authentic histological figure of spermatogenesis from spermatogonia up to round or elongating spermatids. CONCLUSIONS: The PC chip method is simple and effective to improve the efficiency of in vitro spermatogenesis in the organ culture system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA