Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Biol Pharm Bull ; 47(5): 912-916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692868

RESUMO

The human herpesviruses (HHVs) are classified into the following three subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. These HHVs have distinct pathological features, while containing a highly conserved viral replication pathway. Among HHVs, the basic viral particle structure and the sequential processes of viral replication are nearly identical. In particular, the capsid formation mechanism has been proposed to be highly similar among herpesviruses, because the viral capsid-organizing proteins are highly conserved at the structural and functional levels. Herpesviruses form capsids containing the viral genome in the nucleus of infected cells during the lytic phase, and release infectious virus (i.e., virions) to the cell exterior. In the capsid formation process, a single-unit-length viral genome is encapsidated into a preformed capsid. The single-unit-length viral genome is produced by cleavage from a viral genome precursor in which multiple unit-length viral genomes are tandemly linked. This encapsidation and cleavage is carried out by the terminase complex, which is composed of viral proteins. Since the terminase complex-mediated encapsidation and cleavage is a virus-specific mechanism that does not exist in humans, it may be an excellent inhibitory target for anti-viral drugs with high virus specificity. This review provides an overview of the functions of the terminase complexes of HHVs.


Assuntos
Herpesviridae , Humanos , Herpesviridae/fisiologia , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Animais , Genoma Viral , Capsídeo/metabolismo , Replicação Viral
2.
J Bacteriol ; 206(5): e0043523, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38661375

RESUMO

Acinetobacter baumannii is highly resistant to antimicrobial agents, and XDR strains have become widespread. A. baumannii has developed resistance to colistin, which is considered the last resort against XDR Gram-negative bacteria, mainly caused by lipooligosaccharide (LOS) phosphoethanolamine (pEtN) and/or galactosamine (GalN) modifications induced by mutations that activate the two-component system (TCS) pmrAB. Although PmrAB of A. baumannii has been recognized as a drug resistance factor, its function as TCS, including its regulatory genes and response factors, has not been fully elucidated. In this study, to clarify the function of PmrAB as TCS, we elucidated the regulatory genes (regulon) of PmrAB via transcriptome analysis using pmrAB-activated mutant strains. We discovered that PmrAB responds to low pH, Fe2+, Zn2+, and Al3+. A. baumannii selectively recognizes Fe2+ rather than Fe3+, and a novel region ExxxE, in addition to the ExxE motif sequence, is involved in the environmental response. Furthermore, PmrAB participates in the phosphoethanolamine modification of LOS on the bacterial surface in response to metal ions such as Al3+, contributing to the attenuation of Al3+ toxicity and development of resistance to colistin and polymyxin B in A. baumannii. This study demonstrates that PmrAB in A. baumannii not only regulates genes that play an important role in drug resistance but is also involved in responses to environmental stimuli such as metal ions and pH, and this stimulation induces LOS modification. This study reveals the importance of PmrAB in the environmental adaptation and antibacterial resistance emergence mechanisms of A. baumannii. IMPORTANCE: Antimicrobial resistance (AMR) is a pressing global issue in human health. Acinetobacter baumannii is notably high on the World Health Organization's list of bacteria for which new antimicrobial agents are urgently needed. Colistin is one of the last-resort drugs used against extensively drug-resistant (XDR) Gram-negative bacteria. However, A. baumannii has become increasingly resistant to colistin, primarily by modifying its lipooligosaccharide (LOS) via activating mutations in the two-component system (TCS) PmrAB. This study comprehensively elucidates the detailed mechanism of drug resistance of PmrAB in A. baumannii as well as its biological functions. Understanding the molecular biology of these molecules, which serve as drug resistance factors and are involved in environmental recognition mechanisms in bacteria, is crucial for developing fundamental solutions to the AMR problem.


Assuntos
Acinetobacter baumannii , Proteínas de Bactérias , Etanolaminas , Regulação Bacteriana da Expressão Gênica , Lipopolissacarídeos , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Etanolaminas/farmacologia , Etanolaminas/metabolismo , Antibacterianos/farmacologia , Metais/metabolismo , Metais/farmacologia , Fatores de Transcrição
3.
Biochem Biophys Res Commun ; 707: 149785, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38503150

RESUMO

Melanoma, originating from melanocytes, is a highly aggressive tumor. Tyrosinase is involved in melanin production in melanocytes, and its overexpression is noted in malignant melanomas. However, the role of tyrosinase in melanomas remains unclear. Therefore, this study aimed to evaluate the potential functions of tyrosinase in the human melanoma cell line A375. The expression level of tyrosinase in A375 cells was undetectable. However, markedly increased expression level was observed in the mouse melanoma cell line B16F10 and the human melanoma cell line WM266-4. Subsequently, we investigated the effect of ectopic tyrosinase expression on A375 cell motility using wound-healing assay. The overexpression of tyrosinase resulted in enhanced cell migration in both stable and transient tyrosinase expression cells. The levels of filamentous actin were decreased in tyrosinase-expressing A375 cells, suggesting that tyrosinase regulates cell motility by modulating actin polymerization. Histidine residues in tyrosinase are important for its enzymatic activity for synthesizing melanin. Substitution of these histidine residues to alanine residues mitigated the promotion of tyrosinase-induced A375 cell metastasis. Furthermore, melanin treatment enhanced A375 cell metastasis and phosphorylation of Cofilin. Thus, our findings suggest that tyrosinase increases the migration of A375 cells by regulating actin polymerization through its enzymatic activity.


Assuntos
Melaninas , Melanoma Experimental , Animais , Camundongos , Humanos , Melaninas/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Oxigenases de Função Mista/metabolismo , Actinas/metabolismo , Histidina/metabolismo , Melanoma Experimental/patologia , Linhagem Celular Tumoral , Melanócitos/metabolismo
4.
Sci Rep ; 14(1): 5799, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461189

RESUMO

Signal-transducing adaptor protein-2 (STAP-2) is an adaptor molecule involved in several cellular signaling cascades. Here, we attempted to identify novel STAP-2 interacting molecules, and identified c-Cbl associated protein (CAP) as a binding protein through the C-terminal proline-rich region of STAP-2. Expression of STAP-2 increased the interaction between CAP and c-Cbl, suggesting that STAP-2 bridges these proteins and enhances complex formation. CAP/c-Cbl complex is known to regulate GLUT4 translocation in insulin signaling. STAP-2 overexpressed human hepatocyte Hep3B cells showed enhanced GLUT4 translocation after insulin treatment. Elevated levels of Stap2 mRNA have been observed in 3T3-L1 cells and mouse embryonic fibroblasts (MEFs) during adipocyte differentiation. The differentiation of 3T3-L1 cells into adipocytes was highly promoted by retroviral overexpression of STAP-2. In contrast, STAP-2 knockout (KO) MEFs exhibited suppressed adipogenesis. The increase in body weight with high-fat diet feeding was significantly decreased in STAP-2 KO mice compared to WT animals. These data suggest that the expression of STAP-2 correlates with adipogenesis. Thus, STAP-2 is a novel regulatory molecule that controls insulin signal transduction by forming a c-Cbl/STAP-2/CAP ternary complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Insulina , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/metabolismo , Fibroblastos/metabolismo , Insulina/metabolismo , Transdução de Sinais , Diferenciação Celular/genética
5.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396699

RESUMO

Dengue virus (DENV) causes dengue fever and dengue hemorrhagic fever, and DENV infection kills 20,000 people annually worldwide. Therefore, the development of anti-DENV drugs is urgently needed. Sofosbuvir (SOF) is an effective drug for HCV-related diseases, and its triphosphorylated metabolite inhibits viral RNA synthesis by the RNA-dependent RNA polymerase (RdRp) of HCV. (2'R)-2'-Deoxy-2'-fluoro-2'-methyluridine (FMeU) is the dephosphorylated metabolite produced from SOF. The effects of SOF and FMeU on DENV1 replication were analyzed using two DENV1 replicon-based methods that we previously established. First, a replicon-harboring cell assay showed that DENV1 replicon replication in human hepatic Huh7 cells was decreased by SOF but not by FMeU. Second, a transient replicon assay showed that DENV1 replicon replication in Huh7 cells was decreased by SOF; however, in hamster kidney BHK-21 cells, it was not suppressed by SOF. Additionally, the replicon replication in Huh7 and BHK-21 cells was not affected by FMeU. Moreover, we assessed the effects of SOF on infectious DENV1 production. SOF suppressed infectious DENV1 production in Huh7 cells but not in monkey kidney Vero cells. To examine the substrate recognition of the HCV and DENV1 RdRps, the complex conformation of SOF-containing DENV1 RdRp or HCV RdRp was predicted using AlphaFold 2. These results indicate that SOF may be used as a treatment for DENV1 infection.


Assuntos
Hepatite C , Sofosbuvir , Animais , Cricetinae , Chlorocebus aethiops , Humanos , Sofosbuvir/farmacologia , Antivirais/farmacologia , Células Vero , RNA Polimerase Dependente de RNA , Replicação Viral , Hepacivirus/genética
6.
Biol Pharm Bull ; 47(2): 366-372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38325853

RESUMO

Neuronal regrowth after traumatic injury is strongly inhibited in the central nervous system (CNS) of adult mammals. Cell-intrinsic and extrinsic factors limit the regulation of axonal growth and regrowth of fibers is minimal despite nearly all neurons surviving. Developing medical drugs to promote neurological recovery is crucial since neuronal injuries have few palliative cares and no pharmacological interventions. Herein, we developed a novel in vitro axonal regeneration assay system to screen the chemical reagents using human-induced pluripotent stem cell (hiPSC)-derived neurons. These neurons were cultured in a 96-well plate to form a monolayer and were scraped using a floating metal pin tool for axotomy. The cell number and plate coating conditions were optimized to score the regenerating axon. Treatment using the Rho-associated kinase (ROCK) inhibitor Y-27632 enhanced axonal regeneration in this regeneration assay system with hiPSC-derived neurons. Therefore, our novel screening method is suitable for drug screening to identify the chemical compounds that promote axonal regeneration after axotomy under in vitro conditions.


Assuntos
Axônios , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Regeneração Nervosa , Neurônios/fisiologia , Sistema Nervoso Central , Mamíferos
7.
J Virol ; 97(6): e0047523, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272800

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA (dsDNA) gammaherpesvirus with a poorly characterized lytic replication cycle. However, the lytic replication cycle of the alpha- and betaherpesviruses are well characterized. During lytic infection of alpha- and betaherpesviruses, the viral genome is replicated as a precursor form, which contains tandem genomes linked via terminal repeats (TRs). One genomic unit of the precursor form is packaged into a capsid and is cleaved at the TR by the terminase complex. While the alpha- and betaherpesvirus terminases are well characterized, the KSHV terminase remains poorly understood. KSHV open reading frame 7 (ORF7), ORF29, and ORF67.5 are presumed to be components of the terminase complex based on their homology to other terminase proteins. We previously reported that ORF7-deficient KSHV formed numerous immature soccer ball-like capsids and failed to cleave the TRs. ORF7 interacted with ORF29 and ORF67.5; however, ORF29 and ORF67.5 did not interact with each other. While these results suggested that ORF7 is important for KSHV terminase function and capsid formation, the function of ORF67.5 was completely unknown. Therefore, to analyze the function of ORF67.5, we constructed ORF67.5-deficient BAC16. ORF67.5-deficient KSHV failed to produce infectious virus and cleave the TRs, and numerous soccer ball-like capsids were observed in ORF67.5-deficient KSHV-harboring cells. Furthermore, ORF67.5 promoted the interaction between ORF7 and ORF29, and ORF29 increased the interaction between ORF67.5 and ORF7. Thus, our data indicated that ORF67.5 functions as a component of the KSHV terminase complex by contributing to TR cleavage, terminase complex formation, capsid formation, and virus production. IMPORTANCE Although the formation and function of the alpha- and betaherpesvirus terminase complexes are well understood, the Kaposi's sarcoma-associated herpesvirus (KSHV) terminase complex is still largely uncharacterized. This complex presumably contains KSHV open reading frame 7 (ORF7), ORF29, and ORF67.5. We were the first to report the presence of soccer ball-like capsids in ORF7-deficient KSHV-harboring lytic-induced cells. Here, we demonstrated that ORF67.5-deficient KSHV also formed soccer ball-like capsids in lytic-induced cells. Moreover, ORF67.5 was required for terminal repeat (TR) cleavage, infectious virus production, and enhancement of the interaction between ORF7 and ORF29. ORF67.5 has several highly conserved regions among its human herpesviral homologs. These regions were necessary for virus production and for the interaction of ORF67.5 with ORF7, which was supported by the artificial intelligence (AI)-predicted structure model. Importantly, our results provide the first evidence showing that ORF67.5 is essential for terminase complex formation and TR cleavage.


Assuntos
Herpesvirus Humano 8 , Proteínas Virais , Humanos , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
8.
Anticancer Res ; 43(6): 2455-2465, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37247906

RESUMO

BACKGROUND/AIM: Primary effusion lymphoma (PEL) is classified as a rare non-Hodgkin's B-cell lymphoma that is caused by Kaposi's sarcoma-associated herpesvirus (KSHV); PEL cells are latently infected with KSHV. PEL is frequently resistant to conventional chemotherapies. Therefore, the development of novel therapeutic agents is urgently required. Nigericin, a H+ and K+ ionophore, possesses unique pharmacological effects. However, the effects of nigericin on PEL cells remain unknown. MATERIALS AND METHODS: We examined the cytotoxic effects of the K+ ionophores, nigericin, nonactin, and valinomycin, on various B-lymphoma cells including PEL. We also evaluated ionophore-induced changes in signaling pathways involved in KSHV-induced oncogenesis. Moreover, the effects of nigericin on mitochondrial membrane potential and viral reactivation in PEL were analyzed. RESULTS: Although the three tested ionophores inhibited the proliferation of several B-lymphoma cell lines, nigericin inhibited the proliferation of PEL cells compared to KSHV-negative cells. In PEL cells, nigericin disrupted the mitochondrial membrane potential and caused the release of cytochrome c, which triggered caspase-9-mediated apoptosis. Nigericin also induced both an increase in phosphorylated p38 MAPK and proteasomal degradation of ß-catenin. Combination treatment of nigericin with the p38 MAPK inhibitor SB203580 potentiated the cytotoxic effects towards PEL cells, compared to either compound alone. Meanwhile, nigericin did not influence viral replication in PEL cells. CONCLUSION: Nigericin induces apoptosis in PEL cells by mitochondrial dysfunction and down-regulation of Wnt/ß-catenin signaling. Thus, nigericin is a novel drug candidate for treating PEL without the risk of de novo KSHV infection.


Assuntos
Antineoplásicos , Herpesvirus Humano 8 , Linfoma de Efusão Primária , Humanos , Linfoma de Efusão Primária/tratamento farmacológico , Linfoma de Efusão Primária/patologia , Nigericina/metabolismo , Nigericina/farmacologia , Nigericina/uso terapêutico , beta Catenina/metabolismo , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/farmacologia , Herpesvirus Humano 8/fisiologia , Mitocôndrias , Ionóforos/metabolismo , Ionóforos/farmacologia , Ionóforos/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945456

RESUMO

Kaposi's sarcoma herpesvirus (KSHV) ORF34 is a component of the viral pre-initiation complex (vPIC), a highly conserved piece of machinery essential for late gene expression among beta- and gamma-herpes viruses. KSHV ORF34 is also estimated to be a hub protein, associated with the majority of vPIC components. However, the precise mechanisms underlying how the ORF34 molecule contributes to the vPIC function, including the binding manner to other vPIC components, remain unclear. Therefore, we constructed ORF34 alanine-scanning mutants, in which amino-acid residues that were conserved among other herpesviruses had been replaced by alanine. The mutants were analyzed for their binding functions to other vPIC factors, and then were evaluated for their recovering ability of viral production using the cells harboring ORF34-deficient KSHV-BAC. The results demonstrated that at least four cysteines conserved in ORF34 were crucial for binding to other vPIC components, ORF24 and ORF66, virus production, and late gene transcription and expression. Based on the amino acid sequence of ORF34, these four cysteines were expected to constitute a pair of C-Xn-C consensus motifs. An artificial intelligence-predicted structure model revealed that the four cysteines were present tetrahedrally in an intramolecular fashion. Another prediction algorithm indicated the possible capture of metal cations by ORF34. Furthermore, it was experimentally observed that the elimination of cations by a selective chelator resulted in the loss of ORF34's binding ability to other vPIC components. In conclusion, our results suggest the functional importance of KSHV ORF34 conserved cysteines for vPIC components assembly and viral replication.

10.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36674756

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causative agent of Kaposi's sarcoma, Castleman's disease, and primary effusion lymphoma. Although the functions of the viral thymidine kinases (vTK) of herpes simplex virus-1/2 are well understood, that of KSHV ORF21 (an ortholog of vTK) is largely unknown. Here, we investigated the role of ORF21 in lytic replication and infection by generating two ORF21-mutated KSHV BAC clones: ORF21-kinase activity deficient KSHV (21KD) and stop codon-induced ORF21-deleted KSHV (21del). The results showed that both ORF21 mutations did not affect viral genome replication, lytic gene transcription, or the production of viral genome-encapsidated particles. The ORF21 molecule-dependent function, other than the kinase function of ORF21, was involved in the infectivity of the progeny virus. ORF21 was expressed 36 h after the induction of lytic replication, and endogenously expressed ORF21 was localized in the whole cytoplasm. Moreover, ORF21 upregulated the MEK phosphorylation and anchorage-independent cell growth. The inhibition of MEK signaling by U0126 in recipient target cells suppressed the number of progeny virus-infected cells. These suggest that ORF21 transmitted as a tegument protein in the progeny virus enhances the new infection through MEK up-regulation in the recipient cell. Our findings indicate that ORF21 plays key roles in the infection of KSHV through the manipulation of the cellular function.


Assuntos
Genes Virais , Infecções por Herpesviridae , Herpesvirus Humano 8 , Fases de Leitura Aberta , Humanos , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Sarcoma de Kaposi , Latência Viral , Replicação Viral , Infecções por Herpesviridae/virologia
11.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077046

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. During KSHV lytic infection, lytic-related genes, categorized as immediate-early, early, and late genes, are expressed in a temporal manner. The transcription of late genes requires the virus-specific pre-initiation complex (vPIC), which consists of viral transcription factors. However, the protein-protein interactions of the vPIC factors have not been completely elucidated. KSHV ORF18 is one of the vPIC factors, and its interaction with other viral proteins has not been sufficiently revealed. In order to clarify these issues, we analyzed the interaction between ORF18 and another vPIC factor, ORF30, in living cells using the bimolecular fluorescence complementation (BiFC) assay. We identified four amino-acid residues (Leu29, Glu36, His41, and Trp170) of ORF18 that were responsible for its interaction with ORF30. Pull-down assays also showed that these four residues were required for the ORF18-ORF30 interaction. The artificial intelligence (AI) system AlphaFold2 predicted that the identified four residues are localized on the surface of ORF18 and are in proximity to each other. Thus, our AI-predicted model supports the importance of the four residues for binding ORF18 to ORF30. These results indicated that wet experiments in combination with AI may enhance the structural characterization of vPIC protein-protein interactions.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Inteligência Artificial , Fluorescência , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/genética , Humanos , Replicação Viral/genética
12.
J Virol ; 96(18): e0068422, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36073924

RESUMO

During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic infection, lytic-related proteins are synthesized, viral genomes are replicated as a tandemly repeated form, and subsequently, capsids are assembled. The herpesvirus terminase complex is proposed to package an appropriate genome unit into an immature capsid, by cleavage of terminal repeats (TRs) flanking tandemly linked viral genomes. Although the mechanism of capsid formation in alpha- and betaherpesviruses are well-studied, in KSHV, it remains largely unknown. It has been proposed that KSHV ORF7 is a terminase subunit, and ORF7 harbors a zinc-finger motif, which is conserved among other herpesviral terminases. However, the biological significance of ORF7 is unknown. We previously reported that KSHV ORF17 is essential for the cleavage of inner scaffold proteins in capsid maturation, and ORF17 knockout (KO) induced capsid formation arrest between the procapsid and B-capsid stages. However, it remains unknown if ORF7-mediated viral DNA cleavage occurs before or after ORF17-mediated scaffold collapse. We analyzed the role of ORF7 during capsid formation using ORF7-KO-, ORF7&17-double-KO (DKO)-, and ORF7-zinc-finger motif mutant-KSHVs. We found that ORF7 acted after ORF17 in the capsid formation process, and ORF7-KO-KSHV produced incomplete capsids harboring nonspherical internal structures, which resembled soccer balls. This soccer ball-like capsid was formed after ORF17-mediated B-capsid formation. Moreover, ORF7-KO- and zinc-finger motif KO-KSHV failed to appropriately cleave the TR on replicated genome and had a defect in virion production. Interestingly, ORF17 function was also necessary for TR cleavage. Thus, our data revealed ORF7 contributes to terminase-mediated viral genome cleavage and capsid formation. IMPORTANCE In herpesviral capsid formation, the viral terminase complex cleaves the TR sites on newly synthesized tandemly repeating genomes and inserts an appropriate genomic unit into an immature capsid. Herpes simplex virus 1 (HSV-1) UL28 is a subunit of the terminase complex that cleaves the replicated viral genome. However, the physiological importance of the UL28 homolog, KSHV ORF7, remains poorly understood. Here, using several ORF7-deficient KSHVs, we found that ORF7 acted after ORF17-mediated scaffold collapse in the capsid maturation process. Moreover, ORF7 and its zinc-finger motif were essential for both cleavage of TR sites on the KSHV genome and virus production. ORF7-deficient KSHVs produced incomplete capsids that resembled a soccer ball. To our knowledge, this is the first report showing ORF7-KO-induced soccer ball-like capsids production and ORF7 function in the KSHV capsid assembly process. Our findings provide insights into the role of ORF7 in KSHV capsid formation.


Assuntos
Capsídeo , Genoma Viral , Infecções por Herpesviridae , Herpesvirus Humano 8 , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Humanos , Dedos de Zinco
13.
Cell Commun Signal ; 20(1): 95, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729616

RESUMO

BACKGROUND: Viruses must adapt to the environment of their host cells to establish infection and persist. Diverse mammalian cells, including virus-infected cells, release extracellular vesicles such as exosomes containing proteins and miRNAs, and use these vesicles to mediate intercellular communication. However, the roles of exosomes in viral infection remain unclear. RESULTS: We screened viral proteins to identify those responsible for the exosome-mediated enhancement of Epstein-Barr virus (EBV) infection. We identified BGLF2 protein encapsulated in exosomes, which were released by EBV-infected cells. BGLF2 protein is a tegument protein that exists in the space between the envelope and nucleocapsid, and it is released into the cytoplasm shortly after infection. BGLF2 protein-containing exosomes enhanced viral gene expression and repressed innate immunity, thereby supporting the EBV infection. CONCLUSIONS: The EBV tegument protein BGLF2 is encapsulated in exosomes and released by infected cells to facilitate the establishment of EBV infection. These findings suggest that tegument proteins support viral infection not only between the envelope and nucleocapsid, as well as in extraviral particles such as exosomes. Video abstract.


Assuntos
Infecções por Vírus Epstein-Barr , Exossomos , Animais , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Exossomos/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Mamíferos/metabolismo , Proteínas Virais de Fusão , Proteínas Virais
14.
Int Immunol ; 34(6): 303-312, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35192696

RESUMO

Jak3, a member of the Janus kinase family, is essential for the cytokine receptor common gamma chain (γc)-mediated signaling. During activation of Jak3, tyrosine residues are phosphorylated and potentially regulate its kinase activity. We identified a novel tyrosine phosphorylation site within mouse Jak3, Y820, which is conserved in human Jak3, Y824. IL-2-induced tyrosine phosphorylation of Jak3 Y824 in human T cell line HuT78 cells was detected by using a phosphospecific, pY824, antibody. Mutation of mouse Jak3 Y820 to alanine (Y820A) showed increased autophosphorylation of Jak3 and enhanced signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation and transcriptional activation. Stably expressed Jak3 Y820A in F7 cells, an IL-2 responsive mouse pro-B cell line Ba/F3, exhibited enhanced IL-2-dependent cell growth. Mechanistic studies demonstrated that interaction between Jak3 and STAT5 increased in Jak3 Y820A compared to wild-type Jak3. These data suggest that Jak3 Y820 plays a role in negative regulation of Jak3-mediated STAT5 signaling cascade upon IL-2-stimulation. We speculate that this occurs through an interaction promoted by the tyrosine phosphorylated Y820 or a conformational change by Y820 mutation with either the STAT directly or with the recruitment of molecules such as phosphatases via a SH2 interaction. Additional studies will focus on these interactions as Jak3 plays a crucial role in disease and health.


Assuntos
Fator de Transcrição STAT5 , Tirosina , Animais , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Janus Quinase 3 , Camundongos , Proteínas do Leite/metabolismo , Fosforilação , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
15.
Oncol Rep ; 47(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35014678

RESUMO

Primary effusion lymphoma (PEL) is defined as a rare subtype of non­Hodgkin's B cell lymphoma, which is caused by Kaposi's sarcoma­associated herpesvirus (KSHV) in immunosuppressed patients. PEL is an aggressive type of lymphoma and is frequently resistant to conventional chemotherapeutics. Therefore, the discovery of novel drug candidates for the treatment of PEL is of utmost importance. In order to discover potential novel anti­tumor compounds against PEL, the authors previously developed a pyrrolidinium­type fullerene derivative, 1,1,1',1'­tetramethyl [60]fullerenodipyrrolidinium diiodide (derivative #1), which induced the apoptosis of PEL cells via caspase­9 activation. In the present study, the growth inhibitory effects of pyrrolidinium­type (derivatives #1 and #2), pyridinium­type (derivatives #3 and #5 to #9) and anilinium­type fullerene derivatives (derivative #4) against PEL cells were evaluated. This analysis revealed a pyridinium­type derivative (derivative #5; 3­â€‹5'­(etho xycarbonyl)­1',5'­dihydro­2'H­[5,6]fullereno­C60­Ih­[1,9­c]pyrrol­2'­yl]­1­methylpyridinium iodide), which exhibited antitumor activity against PEL cells via the downregulation of Wnt/ß­catenin signaling. Derivative #5 suppressed the viability of KSHV­infected PEL cells compared with KSHV­uninfected B­lymphoma cells. Furthermore, derivative #5 induced the destabilization of ß­catenin and suppressed ß­catenin­TCF4 transcriptional activity in PEL cells. It is known that the constitutive activation of Wnt/ß­catenin signaling is essential for the growth of KSHV­infected cells. The Wnt/ß­catenin activation in KSHV­infected cells is mediated by KSHV latency­associated nuclear antigen (LANA). The data demonstrated that derivative #5 increased ß­catenin phosphorylation, which resulted in ß­catenin polyubiquitination and subsequent degradation. Thus, derivative #5 overcame LANA­mediated ß­catenin stabilization. Furthermore, the administration of derivative #5 suppressed the development of PEL cells in the ascites of SCID mice with tumor xenografts derived from PEL cells. On the whole, these findings provide evidence that the pyridinium­type fullerene derivative #5 exhibits antitumor activity against PEL cells in vitro and in vivo. Thus, derivative #5 may be utilized as a novel therapeutic agent for the treatment of PEL.


Assuntos
Antineoplásicos/farmacologia , Fulerenos/farmacologia , Herpesvirus Humano 8/efeitos dos fármacos , Linfoma de Efusão Primária/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Camundongos , Compostos de Piridínio/farmacologia
16.
Sci Rep ; 11(1): 22919, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824296

RESUMO

CD81 is an integral membrane protein of the tetraspanin family and forms complexes with a variety of other cell surface membrane proteins. CD81 is involved in cell migration and B cell activation. However, the mechanism of the transcriptional regulation of the CD81 gene remains unclear. Here, we revealed that CD81 transcriptional activation was required for binding of the transcription factor Pax5 at the Pax5-binding sequence (-54)GCGGGAC(-48) located upstream of the transcriptional start site (TSS) of the CD81 gene. The reporter assay showed that the DNA sequence between - 130 and - 39 bp upstream of the TSS of the CD81 gene had promoter activity for CD81 transcription. The DNA sequence between - 130 and - 39 bp upstream of TSS of CD81 harbors two potential Pax5-binding sequences (-87)GCGTGAG(-81) and (-54)GCGGGAC(-48). Reporter, electrophoresis mobility shift, and chromatin immunoprecipitation (ChIP) assays disclosed that Pax5 bound to the (-54)GCGGGAC(-48) in the promoter region of the CD81 gene in order to activate CD81 transcription. Pax5 overexpression increased the expression level of CD81 protein, while the Pax5-knockdown by shRNA decreased CD81 expression. Moreover, we found that the expression level of CD81 was positively correlated with Pax5 expression in human tumor cell lines. Because CD81 was reported to be involved in cell migration, we evaluated the effects of Pax5 overexpression by wound healing and transwell assays. The data showed that overexpression of either Pax5 or CD81 promoted the epithelial cell migration. Thus, our findings provide insights into the transcriptional mechanism of the CD81 gene through transcription factor Pax5.


Assuntos
Neoplasias/metabolismo , Fator de Transcrição PAX5/metabolismo , Regiões Promotoras Genéticas , Tetraspanina 28/metabolismo , Ativação Transcricional , Células A549 , Sítios de Ligação , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/patologia , Fator de Transcrição PAX5/genética , Ligação Proteica , Tetraspanina 28/genética
17.
Biochem Biophys Res Commun ; 581: 103-109, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34678685

RESUMO

The controlled release of medications using nanoparticle-based drug delivery carriers is a promising method to increase the efficacy of pharmacotherapy and gene therapy. One critical issue that needs to be overcome with these drug delivery carriers is their target specificity. We focused on the cell tropism of a virus to solve this issue, i.e., we attempted to apply hepatitis B virus-like particle (HBV-VLP) as a novel hepatic cell-selective carrier for medication and DNA. To prepare HBV-VLP, 293T cells were transfected with expression plasmids carrying HBV envelope surface proteins, large envelope protein (L), and small envelope protein (S). After 72 h post-transfection, VLP-containing culture supernatants were harvested, and HBV-VLP was labeled with red fluorescent dye (DiI) and was purified by sucrose gradient ultracentrifugation. An anticancer drugs (geldanamycin or doxorubicin) and GFP-expressing plasmid DNA were incorporated into HBV-VLP, and medication- and plasmid DNA-loaded VLPs were prepared. We evaluated their delivery capabilities into hepatocytes, other organ-derived cells, and hepatocytes expressing sodium taurocholate cotransporting polypeptide (NTCP), which functions as the cellular receptor for HBV by binding to HBV L protein. HBV-VLP selectively delivered both anticancer drugs and plasmid DNA not into HepG2, Huh7, and other organ cells but into HepG2 cells expressing NTCP. In summary, we developed a novel delivery nanocarrier using HBV-VLP that could be used as a hepatitis selective drug- and DNA-carrier for cancer treatment and gene therapy.


Assuntos
Partículas Artificiais Semelhantes a Vírus/metabolismo , Portadores de Fármacos , Técnicas de Transferência de Genes , Vírus da Hepatite B/química , Proteínas do Envelope Viral/genética , Antineoplásicos/química , Antineoplásicos/farmacologia , Partículas Artificiais Semelhantes a Vírus/química , Benzoquinonas/química , Benzoquinonas/farmacologia , Carbocianinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Composição de Medicamentos/métodos , Corantes Fluorescentes/química , Expressão Gênica , Células HEK293 , Células HeLa , Células Hep G2 , Vírus da Hepatite B/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/farmacologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Coloração e Rotulagem/métodos , Simportadores/genética , Simportadores/metabolismo , Proteínas do Envelope Viral/metabolismo
18.
Microorganisms ; 9(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071710

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman disease. Although capsid formation and maturation in the alpha-herpesvirus herpes simplex virus 1 are well understood, these processes in KSHV remain unknown. The KSHV ORF7, encoding the viral terminase (DNA cleavage and packaging protein), is thought to contribute to capsid formation; however, functional information is lacking. Here, we investigated the role of ORF7 during KSHV lytic replication by generating two types of ORF7 knock-out (KO) mutants (frameshift-induced and stop codon-induced ORF7 deficiency), KSHV BAC16, and its revertants. The results revealed that both ORF7-KO KSHVs showed significantly reduced viral production but there was no effect on lytic gene expression and viral genome replication. Complementation assays showed virus production from cells harboring ORF7-KO KSHV could be recovered by ORF7 overexpression. Additionally, exogenously expressed ORF7 partially induced nuclear relocalization of the other terminase components, ORF29 and ORF67.5. ORF7 interacted with both ORF29 and ORF67.5, whereas ORF29 and ORF67.5 failed to interact with each other, suggesting that ORF7 functions as a hub molecule in the KSHV terminase complex for interactions between ORF29 and ORF67.5. These findings indicate that ORF7 plays a key role in viral replication, as a component of terminase.

19.
Virology ; 558: 76-85, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33735753

RESUMO

Kaposi's sarcoma-associated herpesvirus is a human rhadinovirus of the gammaherpesvirus sub-family. Although herpesviruses are well-studied models of capsid formation and its processes, those of KSHV remain unknown. KSHV ORF17 encoding the viral protease precursor (ORF17-prePR) is thought to contribute to capsid formation; however, functional information is largely unknown. Here, we evaluated the role of ORF17 during capsid formation by generating ORF17-deficient and ORF17 protease-dead KSHV. Both mutants showed a decrease in viral production but not DNA replication. ORF17 R-mut, with a point-mutation at the restriction or release site (R-site) by which ORF17-prePR can be functionally cleaved into a protease (ORF17-PR) and an assembly region (ORF17-pAP/-AP), failed to play a role in viral production. Furthermore, wild type KSHV produced a mature capsid, whereas ORF17-deficient and protease-dead KSHV produced a B-capsid, (i.e., a closed body possessing a circular inner structure). Therefore, ORF17 and its protease function are essential for appropriate capsid maturation.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/fisiologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Fases de Leitura Aberta/genética , Animais , Proteínas do Capsídeo/metabolismo , Chlorocebus aethiops , Replicação do DNA , Células HEK293 , Herpesvirus Humano 8/enzimologia , Humanos , Serina Endopeptidases , Células Vero
20.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33627385

RESUMO

During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication, host cell functions including protein expression and post-translational modification pathways are dysregulated by KSHV to promote virus production. Here, we attempted to identify key proteins for KSHV lytic replication by profiling protein expression in the latent and lytic phases using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Proteomic analysis, immunoblotting, and quantitative PCR demonstrated that antigen-F (HLA-F) adjacent transcript 10 (FAT10) and UBE1L2 (also known as ubiquitin-like modifier-activating enzyme 6, UBA6) were upregulated during lytic replication. FAT10 is a ubiquitin-like protein (UBL). UBE1L2 is the FAT10-activating enzyme (E1), which is essential for FAT10 modification (FAT10ylation). FAT10ylated proteins were immediately expressed after lytic induction and increased over time during lytic replication. Knockout of UBE1L2 suppressed KSHV production but not KSHV DNA synthesis. In order to isolate FAT10ylated proteins during KSHV lytic replication, we conducted immunoprecipitations using anti-FAT10 antibody and Ni-NTA chromatography of exogenously expressed His-tagged FAT10 from cells undergoing latent or lytic replication. LC-MS/MS was performed to identify FAT10ylated proteins. We identified KSHV ORF59 and ORF61 as FAT10ylation substrates. Our study revealed that the UBE1L2-FAT10 system is upregulated during KSHV lytic replication, and it contributes to viral propagation.ImportanceUbiquitin and UBL post-translational modifications, including FAT10, are utilized and dysregulated by viruses for achievement of effective infection and virion production. The UBE1L2-FAT10 system catalyzes FAT10ylation, where one or more FAT10 molecules are covalently linked to a substrate. FAT10ylation is catalyzed by the sequential actions of E1 (activation enzyme), E2 (conjugation enzyme), and E3 (ligase) enzymes. The E1 enzyme for FAT10ylation is UBE1L2, which activates FAT10 and transfers it to E2/USE1. FAT10ylation regulates the cell cycle, IFN signaling, and protein degradation; however, its primary biological function remains unknown. Here, we revealed that KSHV lytic replication induces UBE1L2 expression and production of FAT10ylated proteins including KSHV lytic proteins. Moreover, UBE1L2 knockout suppressed virus production during the lytic cycle. This is the first report demonstrating the contribution of the UBE1L2-FAT10 system to KSHV lytic replication. Our findings provide insight into the physiological function(s) of novel post-translational modifications in KSHV lytic replication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA