Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Rice (N Y) ; 17(1): 25, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592643

RESUMO

BACKGROUND: Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with OsTZF5, encoding a CCCH-tandem zinc finger protein, under the control of the rice LIP9 stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T6 generation. RESULTS: Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of - 25 to - 75 kPa at a soil depth of 30 cm which reduced biomass by 30-55% and grain yield by 1-92%, presenting a range of drought severities. OsTZF5 transgenic lines showed high yield advantage under drought over IR64 in early generations, which was related to shorter time to flowering, lower shoot biomass and higher harvest index. However, the increases in values for yield and related traits in the transgenics became smaller over successive generations despite continued detection of drought-induced transgene expression as conferred by the LIP9 promoter. The decreased advantage of the transgenics over generations tended to coincide with increased levels of homozygosity. Background cleaning of the transgenic lines as well as introgression of the transgene into an IR64 line containing major-effect drought yield QTLs, which were evaluated starting at the BC3F1 and BC2F3 generation, respectively, did not result in consistently increased yield under drought as compared to the respective checks. CONCLUSIONS: Although we cannot conclusively explain the genetic factors behind the loss of yield advantage of the transgenics under drought across generations, our results help in distinguishing among potential drought tolerance mechanisms related to effectiveness of the transgenics, since early flowering and harvest index most closely reflected the levels of yield advantage in the transgenics across generations while reduced biomass did not.

2.
Plant Direct ; 8(1): e557, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38161730

RESUMO

Proton (H+) release is linked to aluminum (Al)-enhanced organic acids (OAs) excretion from the roots under Al rhizotoxicity in plants. It is well-reported that the Al-enhanced organic acid excretion mechanism is regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1), a zinc-finger TF that regulates major Al tolerance genes. However, the mechanism of H+ release linked to OAs excretion under Al stress has not been fully elucidated. Recent physiological and molecular-genetic studies have implicated the involvement of SMALL AUXIN UP RNAs (SAURs) in the activation of plasma membrane H+-ATPases for stress responses in plants. We hypothesized that STOP1 is involved in the regulation of Al-responsive SAURs, which may contribute to the co-secretion of protons and malate under Al stress conditions. In our transcriptome analysis of the roots of the stop1 (sensitive to proton rhizotoxicity1) mutant, we found that STOP1 regulates the transcription of one of the SAURs, namely SAUR55. Furthermore, we observed that the expression of SAUR55 was induced by Al and repressed in the STOP1 T-DNA insertion knockout (KO) mutant (STOP1-KO). Through in silico analysis, we identified a functional STOP1-binding site in the promoter of SAUR55. Subsequent in vitro and in vivo studies confirmed that STOP1 directly binds to the promoter of SAUR55. This suggests that STOP1 directly regulates the expression of SAUR55 under Al stress. We next examined proton release in the rhizosphere and malate excretion in the T-DNA insertion KO mutant of SAUR55 (saur55), in conjunction with STOP1-KO. Both saur55 and STOP1-KO suppressed rhizosphere acidification and malate release under Al stress. Additionally, the root growth of saur55 was sensitive to Al-containing media. In contrast, the overexpressed line of SAUR55 enhanced rhizosphere acidification and malate release, leading to increased Al tolerance. These associations with Al tolerance were also observed in natural variations of Arabidopsis. These findings demonstrate that transcriptional regulation of SAUR55 by STOP1 positively regulates H+ excretion via PM H+-ATPase 2 which enhances Al tolerance by malate secretion from the roots of Arabidopsis. The activation of PM H+-ATPase 2 by SAUR55 was suggested to be due to PP2C.D2/D5 inhibition by interaction on the plasma membrane with its phosphatase. Furthermore, RNAi-suppression of NtSTOP1 in tobacco shows suppression of rhizosphere acidification under Al stress, which was associated with the suppression of SAUR55 orthologs, which are inducible by Al in tobacco. It suggests that transcriptional regulation of Al-inducible SAURs by STOP1 plays a critical role in OAs excretion in several plant species as an Al tolerance mechanism.

3.
Nat Commun ; 14(1): 5047, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598175

RESUMO

Drought severely damages crop production, even under conditions so mild that the leaves show no signs of wilting. However, it is unclear how field-grown plants respond to mild drought. Here, we show through six years of field trials that ridges are a useful experimental tool to mimic mild drought stress in the field. Mild drought reduces inorganic phosphate levels in the leaves to activate the phosphate starvation response (PSR) in soybean plants in the field. Using Arabidopsis thaliana and its mutant plants grown in pots under controlled environments, we demonstrate that PSR occurs before abscisic acid response under progressive mild drought and that PSR plays a crucial role in plant growth under mild drought. Our observations in the field and laboratory using model crop and experimental plants provide insight into the molecular response to mild drought in field-grown plants and the relationship between nutrition and drought stress response.


Assuntos
Arabidopsis , Inanição , Humanos , Fosfatos , Ácido Abscísico , Secas , Arabidopsis/genética , Laboratórios
4.
Plant Signal Behav ; 17(1): 2142725, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36398733

RESUMO

Different abiotic stresses induce OsTZF1, a tandem CCCH-type zinc finger domain gene, in rice. Here, we report that transgenic rice plants overexpressing OsTZF1 under own promoter (POsTZF1:OsTZF1-OX [for overexpression]) transferred to soil showed normal growth similar to vector control plants. The POsTZF1:OsTZF1-OX produced normal leaves without any lesion mimic phenotype and exhibited normal seed setting. The POsTZF1:OsTZF1-OX plants showed significantly increased tolerance to salt and drought stresses and enhanced post stress recovery. Microarray analysis revealed a total of 846 genes up-regulated and 360 genes down-regulated in POsTZF1:OsTZF1-OX salt-treated plants. Microarray analysis of POsTZF1:OsTZF1-OX plants showed the regulation of many abiotic stress tolerance genes. These results suggest that OsTZF1-OX under own promoter show abiotic stress tolerance and produces no pleiotropic effect on phenotype of transgenic rice plant.


Assuntos
Oryza , Oryza/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Cloreto de Sódio/farmacologia , Dedos de Zinco/genética , Plantas Geneticamente Modificadas/metabolismo
5.
Front Plant Sci ; 12: 643499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815450

RESUMO

Quinoa (Chenopodium quinoa), native to the Andean region of South America, has been recognized as a potentially important crop in terms of global food and nutrition security since it can thrive in harsh environments and has an excellent nutritional profile. Even though challenges of analyzing the complex and heterogeneous allotetraploid genome of quinoa have recently been overcome, with the whole genome-sequencing of quinoa and the creation of genotyped inbred lines, the lack of technology to analyze gene function in planta is a major limiting factor in quinoa research. Here, we demonstrate that two virus-mediated transient expression techniques, virus-induced gene silencing (VIGS) and virus-mediated overexpression (VOX), can be used in quinoa. We show that apple latent spherical virus (ALSV) can induce gene silencing of quinoa phytoene desaturase (CqPDS1) in a broad range of quinoa inbred lines derived from the northern and southern highland and lowland sub-populations. In addition, we show that ALSV can be used as a VOX vector in roots. Our data also indicate that silencing a quinoa 3,4-dihydroxyphenylalanine 4,5-dioxygenase gene (CqDODA1) or a cytochrome P450 enzyme gene (CqCYP76AD1) inhibits betalain production and that knockdown of a reduced-height gene homolog (CqRHT1) causes an overgrowth phenotype in quinoa. Moreover, we show that ALSV can be transmitted to the progeny of quinoa plants. Thus, our findings enable functional genomics in quinoa, ushering in a new era of quinoa research.

6.
PLoS One ; 15(12): e0243376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270810

RESUMO

Abscisic acid (ABA) signaling components play an important role in the drought stress response in plants. Arabidopsis thaliana ENHANCED RESPONSE TO ABA1 (ERA1) encodes the ß-subunit of farnesyltransferase and regulates ABA signaling and the dehydration response. Therefore, ERA1 is an important candidate gene for enhancing drought tolerance in numerous crops. However, a rice (Oryza sativa) ERA1 homolog has not been characterized previously. Here, we show that rice osera1 mutant lines, harboring CRISPR/Cas9-induced frameshift mutations, exhibit similar leaf growth as control plants but increased primary root growth. The osera1 mutant lines also display increased sensitivity to ABA and an enhanced response to drought stress through stomatal regulation. These results illustrate that OsERA1 is a negative regulator of primary root growth under nonstressed conditions and also of responses to ABA and drought stress in rice. These findings improve our understanding of the role of ABA signaling in the drought stress response in rice and suggest a strategy to genetically improve rice.


Assuntos
Ácido Abscísico/metabolismo , Secas , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Sistemas CRISPR-Cas/genética , Mutação da Fase de Leitura , Mutagênese , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas/fisiologia
7.
DNA Res ; 27(4)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33051662

RESUMO

Cultivation of quinoa (Chenopodium quinoa), an annual pseudocereal crop that originated in the Andes, is spreading globally. Because quinoa is highly nutritious and resistant to multiple abiotic stresses, it is emerging as a valuable crop to provide food and nutrition security worldwide. However, molecular analyses have been hindered by the genetic heterogeneity resulting from partial outcrossing. In this study, we generated 136 inbred quinoa lines as a basis for the molecular identification and characterization of gene functions in quinoa through genotyping and phenotyping. Following genotyping-by-sequencing analysis of the inbred lines, we selected 5,753 single-nucleotide polymorphisms (SNPs) in the quinoa genome. Based on these SNPs, we show that our quinoa inbred lines fall into three genetic sub-populations. Moreover, we measured phenotypes, such as salt tolerance and key growth traits in the inbred quinoa lines and generated a heatmap that provides a succinct overview of the genotype-phenotype relationship between inbred quinoa lines. We also demonstrate that, in contrast to northern highland lines, most lowland and southern highland lines can germinate even under high salinity conditions. These findings provide a basis for the molecular elucidation and genetic improvement of quinoa and improve our understanding of the evolutionary process underlying quinoa domestication.


Assuntos
Chenopodium quinoa/genética , Polimorfismo de Nucleotídeo Único , Tolerância ao Sal/genética , Chenopodium quinoa/fisiologia , Estudo de Associação Genômica Ampla , Fenótipo
8.
Plant Cell ; 31(1): 84-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30606780

RESUMO

Abscisic acid (ABA) is a plant hormone that regulates a diverse range of cellular and molecular processes during development and in response to osmotic stress. In Arabidopsis (Arabidopsis thaliana), three Suc nonfermenting-1-related protein kinase2s (SnRK2s), SRK2D, SRK2E, and SRK2I, are key positive regulators involved in ABA signaling whose substrates have been well studied. Besides reduced drought-stress tolerance, the srk2d srk2e srk2i mutant shows abnormal growth phenotypes, such as an increased number of leaves, under nonstress conditions. However, it remains unclear whether, and if so how, SnRK2-mediated ABA signaling regulates growth and development. Here, we show that the primary metabolite profile of srk2d srk2e srk2i grown under nonstress conditions was considerably different from that of wild-type plants. The metabolic changes observed in the srk2d srk2e srk2i were similar to those in an ABA-biosynthesis mutant, aba2-1, and both mutants showed a higher leaf emergence rate than wild type. Consistent with the increased amounts of citrate, isotope-labeling experiments revealed that respiration through the tricarboxylic acid cycle was enhanced in srk2d srk2e srk2i These results, together with transcriptome data, indicate that the SnRK2s involved in ABA signaling modulate metabolism and leaf growth under nonstress conditions by fine-tuning flux through the tricarboxylic acid cycle.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/metabolismo
9.
Plant Cell Physiol ; 60(1): 77-84, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219921

RESUMO

Soybean (Glycine max) is the most important dicot crop worldwide, and is increasingly used as a model legume due to the wide availability of genomic soybean resources; however, the slow generation times of soybean plants are currently a major hindrance to research. Here, we demonstrate a method for accelerating soybean breeding in compact growth chambers, which greatly shortens the generation time of the plants and accelerates breeding and research projects. Our breeding method utilizes commonly used fluorescent lamps (220 µmol m-2 s-1 at the canopy level), a 14 h light (30°C)/10 h dark (25°C) cycle and carbon dioxide (CO2) supplementation at >400 p.p.m. Using this approach, the generation time of the best-characterized elite Japanese soybean cultivar, Enrei, was shortened from 102-132 d reported in the field to just 70 d, thereby allowing up to 5 generations per year instead of the 1-2 generations currently possible in the field and/or greenhouse. The method also facilitates the highly efficient and controlled crossing of soybean plants. Our method uses CO2 supplementation to promote the growth and yield of plants, appropriate light and temperature conditions to reduce the days to flowering, and the reaping and sowing of immature seeds to shorten the reproductive period greatly. Thus, the appropriate parameters enable acceleration of soybean breeding in the compact growth chambers commonly used for laboratory research. The parameters used in our method could therefore be optimized for other species, cultivars, accessions and experimental designs to facilitate rapid breeding in a wide range of crops.


Assuntos
Dióxido de Carbono/farmacologia , Glycine max/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Cruzamentos Genéticos , Flores/efeitos dos fármacos , Flores/fisiologia , Flores/efeitos da radiação , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Luz , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Temperatura
10.
Planta ; 249(2): 615, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30446815

RESUMO

The article Casein kinase 2 α and ß subunits inversely modulate ABA signal output in Arabidopsis protoplasts, written by Yukari Nagatoshi, Miki Fujita, and Yasunari Fujita, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 24 May 2018 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed on 19 November 2018 to © The Author(s) 2018 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

11.
Plant Signal Behav ; 13(11): e1525998, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30335565

RESUMO

Protein kinase CK2 (formerly known as casein kinase II), a Ser/Thr protein kinase highly conserved in eukaryotes, is essential for cell survival by regulating a wide range of plant growth, development, and stress responses. A growing body of evidence has shown a link between CK2 and abscisic acid (ABA) signaling in response to abiotic stress. However, the roles of CK2 subunits in ABA signaling remain unclear in plants. Our recent work in Arabidopsis thaliana has revealed that CK2α and CK2ß subunits inversely modulate ABA signal output. Here, we examine the roles of CK2αs, by assessing how CK2αs affect ABA signaling. Together with the previous findings, our mutant and transient expression analyses demonstrate that CK2αs positively modulate ABA signaling through the core ABA signaling pathway in the presence of ABA, though the positive effect of CK2αs are much smaller than that of core ABA signaling components in ABA response. In addtion, our current and previous findings also suggest that CK2αs play a role in maintaining constitutively active ABA signaling even in the absence of ABA independently of the core ABA signaling pathway. Thus, we found that CK2αs constitutively activate ABA signaling in the presence or absence of ABA in a different manner in Arabidopsis plants.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Caseína Quinase II/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Caseína Quinase II/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
12.
Breed Sci ; 68(4): 442-448, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30369818

RESUMO

The 100-seed weight (100SW) is one of the most important traits that control soybean yield. To identify the quantitative trait loci (QTL) of 100SW, 120 BC3F5 chromosome segment substitution lines (CSSLs) were cultivated over three years. The CSSLs were developed from a cross between the cultivated soybean variety 'Jackson' and the wild soybean accession 'JWS156-1', followed by continuous backcrossing using 'Jackson' variety as a recurrent parent. A total of nine QTLs (qSW8.1, qSW9.1, qSW12.1, qSW13.1, qSW14.1, qSW16.1, qSW17.1, qSW17.2, and qSW20.1) were detected on eight chromosomes. Of these, qSW12.1 (LOD = 6.78-12.31) was detected over the three successive years on chromosome 12 as a novel, stable, and major QTL. To validate the effect of qSW12.1, a residual heterozygous line (RHL), RHL564, which showed heterozygous at the qSW12.1 region, was selected from the BC3F5 population. Of the two homologous genotypes in the progenies produced by self-pollination of RHL564, a higher seed weight was observed in the 'Jackson' genotype plants than that in the 'JWS156-1' genotype plants. qSW12.1 was delimited in an interval of approximately 1,348 kb between the BARCSOYSSR_12_1282 and BARCSOYSSR_12_1347 markers on chromosome 12.

13.
Planta ; 248(3): 571-578, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29799081

RESUMO

MAIN CONCLUSION: Our transient gene expression analyses in Arabidopsis protoplasts support the view that CK2αs and CK2ßs positively and negatively modulate ABRE-dependent gene expression, respectively. The phytohormone abscisic acid (ABA) regulates the expression of thousands of genes via ABA-responsive elements (ABREs), and has a crucial role in abiotic stress response. Casein kinase II (CK2), a conserved Ser/Thr protein kinase in eukaryotes, is essential for plant viability. Although the CK2 has been known as a tetrameric holoenzyme comprised of two catalytic α and two regulatory ß subunits, each of the two types of subunits has been proposed to have independent functions. The Arabidopsis genome encodes four α subunits (CK2α1, CK2α2, CK2α3, CK2α4) and four ß subunits (CK2ß1, CK2ß2, CK2ß3, CK2ß4). There is a growing body of evidence linking CK2 to ABA signaling and abiotic stress responses. However, the roles of each CK2 subunit in ABA signaling remain largely elusive. Using the transient expression system with the core ABA signaling components in Arabidopsis leaf mesophyll protoplasts, we show here that CK2α1 and CK2α2 (CK2α1/2) positively modulate ABRE-dependent gene expression as ABA signal output in ABA signaling, whereas all four CK2ßs negatively modulate the ABRE-dependent gene expression mediated by subclass III SnRK2-AREB/ABF pathway and by CK2α1/2. These data indicate that CK2α1/2 and CK2ßs positively and negatively modulate ABA signal output, respectively, suggesting that the quantitative balance of CK2 subunits determines the ABA signal output in plants. Given that CK2s act as pleiotropic enzymes involved in multiple developmental and stress-responsive processes, our findings suggest that CK2 subunits may be involved in integration and coordination of ABA-dependent and -independent signaling.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Caseína Quinase II/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Caseína Quinase II/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Folhas de Planta/metabolismo , Protoplastos/metabolismo , Transdução de Sinais
14.
Plant J ; 94(4): 626-637, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29513388

RESUMO

Plant defense against herbivores is modulated by herbivore-associated molecular patterns (HAMPs) from oral secretions (OS) and/or saliva of insects. Furthermore, feeding wounds initiate plant self-damage responses modulated by danger-associated molecular patterns (DAMPs) such as immune defense-promoting plant elicitor peptides (Peps). While temporal and spatial co-existence of both patterns during herbivory implies a possibility of their close interaction, the molecular mechanisms remain undetermined. Here we report that exogenous application of rice (Oryza sativa) peptides (OsPeps) can elicit multiple defense responses in rice cell cultures. Specific activation of OsPROPEP3 gene transcripts in rice leaves by wounding and OS treatments further suggests a possible involvement of the OsPep3 peptide in rice-herbivore interactions. Correspondingly, we found that simultaneous application of OsPep3 and Mythimna loreyi OS significantly amplifies an array of defense responses in rice cells, including mitogen-activated protein kinase activation, and generation of defense-related hormones and metabolites. The induction of OsPROPEP3/4 by OsPep3 points to a positive auto-feedback loop in OsPep signaling which may contribute to additional enhancement of defense signal(s). Finally, the overexpression of the OsPep receptor OsPEPR1 increases the sensitivity of rice plants not only to the cognate OsPeps but also to OS signals. Our findings collectively suggest that HAMP-DAMP signal integration provides a critical step in the amplification of defense signaling in plants.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mariposas/fisiologia , Oryza/genética , Peptídeos/metabolismo , Imunidade Vegetal , Transdução de Sinais , Animais , Retroalimentação Fisiológica , Herbivoria , Proteínas Quinases Ativadas por Mitógeno/genética , Oryza/imunologia , Oryza/fisiologia , Peptídeos/genética , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
15.
World J Microbiol Biotechnol ; 34(4): 56, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29594576

RESUMO

Plant leaves (phyllosphere) have a great potential for colonization and microbial growth, consisting of a dynamic environment in which several factors can interfere with the microbial population structure. The use of genetically modified (GM) plants has introduced several traits in agriculture, such as the improvement of plant drought tolerance, as observed in the AtAREB1 transcription factor overexpression in soybean (Glycine max L. Merrill). The present study aimed at investigating the taxonomic and functional profile of the leaf microbial community of bacteria found in GM (drought-tolerant event 1Ea2939) and conventional (BR 16) soybean plants. Bacterial DNA was extracted from leaf samples collected from each genotype and used for microbial diversity and richness analysis through the MiSeq Illumina platform. Functional prediction was performed using the PICRUSt tool and the STAMP v 2.1.3 software. The obtainment of the GM event 1Ea2939 showed minimum effects on the microbial community and in the potential for chemical-genetic communication, i.e. in the potential for symbiotic and/or mutualistic interaction between plants and their natural microbiota.


Assuntos
Proteínas de Arabidopsis/genética , Bactérias/classificação , Fatores de Transcrição de Zíper de Leucina Básica/genética , Endófitos/classificação , Glycine max/genética , Glycine max/microbiologia , Microbiota , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , DNA Bacteriano/genética , Secas , Endófitos/genética , Endófitos/isolamento & purificação , Fabaceae/genética , Fabaceae/microbiologia , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo
16.
Front Plant Sci ; 8: 448, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443101

RESUMO

Drought is one of the most stressful environmental factor causing yield and economic losses in many soybean-producing regions. In the last decades, transcription factors (TFs) are being used to develop genetically modified plants more tolerant to abiotic stresses. Dehydration responsive element binding (DREB) and ABA-responsive element-binding (AREB) TFs were introduced in soybean showing improved drought tolerance, under controlled conditions. However, these results may not be representative of the way in which plants behave over the entire season in the real field situation. Thus, the objectives of this study were to analyze agronomical traits and physiological parameters of AtDREB1A (1Ab58), AtDREB2CA (1Bb2193), and AtAREB1 (1Ea2939) GM lines under irrigated (IRR) and non-irrigated (NIRR) conditions in a field experiment, over two crop seasons and quantify transgene and drought-responsive genes expression. Results from season 2013/2014 revealed that line 1Ea2939 showed higher intrinsic water use and leaf area index. Lines 1Ab58 and 1Bb2193 showed a similar behavior to wild-type plants in relation to chlorophyll content. Oil and protein contents were not affected in transgenic lines in NIRR conditions. Lodging, due to plentiful rain, impaired yield from the 1Ea2939 line in IRR conditions. qPCR results confirmed the expression of the inserted TFs and drought-responsive endogenous genes. No differences were identified in the field experiment performed in crop season 2014/2015, probably due to the optimum rainfall volume during the cycle. These field screenings showed promising results for drought tolerance. However, additional studies are needed in further crop seasons and other sites to better characterize how these plants may outperform the WT under field water deficit.

17.
PLoS One ; 12(4): e0175650, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28419130

RESUMO

Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA) and drought tolerance. We therefore used virus-induced gene silencing (VIGS) to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B), as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV)-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.


Assuntos
Ácido Abscísico/farmacologia , Secas , Glycine max/genética , Proteínas de Plantas/genética , Estômatos de Plantas/efeitos dos fármacos , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Sequência de Bases , Regulação para Baixo/efeitos dos fármacos , Farnesiltranstransferase/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica , Isoenzimas/genética , Malus/virologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Vírus de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Glycine max/enzimologia , Glycine max/crescimento & desenvolvimento
18.
DNA Res ; 23(6): 535-546, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27458999

RESUMO

Chenopodium quinoa Willd. (quinoa) originated from the Andean region of South America, and is a pseudocereal crop of the Amaranthaceae family. Quinoa is emerging as an important crop with the potential to contribute to food security worldwide and is considered to be an optimal food source for astronauts, due to its outstanding nutritional profile and ability to tolerate stressful environments. Furthermore, plant pathologists use quinoa as a representative diagnostic host to identify virus species. However, molecular analysis of quinoa is limited by its genetic heterogeneity due to outcrossing and its genome complexity derived from allotetraploidy. To overcome these obstacles, we established the inbred and standard quinoa accession Kd that enables rigorous molecular analysis, and presented the draft genome sequence of Kd, using an optimized combination of high-throughput next generation sequencing on the Illumina Hiseq 2500 and PacBio RS II sequencers. The de novo genome assembly contained 25 k scaffolds consisting of 1 Gbp with N50 length of 86 kbp. Based on these data, we constructed the free-access Quinoa Genome DataBase (QGDB). Thus, these findings provide insights into the mechanisms underlying agronomically important traits of quinoa and the effect of allotetraploidy on genome evolution.


Assuntos
Adaptação Fisiológica , Chenopodium quinoa/genética , Genoma de Planta , Tetraploidia , Chenopodium quinoa/química , DNA de Plantas/química , DNA de Plantas/genética , Endogamia , Valor Nutritivo , Melhoramento Vegetal
19.
Proc Natl Acad Sci U S A ; 113(11): 3090-5, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26884175

RESUMO

In this study, we used a loss-of-function approach to elucidate the functions of three Arabidopsis type B response regulators (ARRs)--namely ARR1, ARR10, and ARR12--in regulating the Arabidopsis plant responses to drought. The arr1,10,12 triple mutant showed a significant increase in drought tolerance versus WT plants, as indicated by its higher relative water content and survival rate on drying soil. This enhanced drought tolerance of arr1,10,12 plants can be attributed to enhanced cell membrane integrity, increased anthocyanin biosynthesis, abscisic acid (ABA) hypersensitivity, and reduced stomatal aperture, but not to altered stomatal density. Further drought-tolerance tests of lower-order double and single mutants indicated that ARR1, ARR10, and ARR12 negatively and redundantly control plant responses to drought, with ARR1 appearing to bear the most critical function among the three proteins. In agreement with these findings, a comparative genome-wide analysis of the leaves of arr1,10,12 and WT plants under both normal and dehydration conditions suggested a cytokinin (CK) signaling-mediated network controlling plant adaptation to drought via many dehydration/drought- and/or ABA-responsive genes that can provide osmotic adjustment and protection to cellular and membrane structures. Expression of all three ARR genes was repressed by dehydration and ABA treatments, inferring that plants down-regulate these genes as an adaptive mechanism to survive drought. Collectively, our results demonstrate that repression of CK response, and thus CK signaling, is one of the strategies plants use to cope with water deficit, providing novel insight for the design of drought-tolerant plants by genetic engineering.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Citocininas/fisiologia , Proteínas de Ligação a DNA/fisiologia , Secas , Fatores de Transcrição/fisiologia , Ácido Abscísico/farmacologia , Ácido Abscísico/fisiologia , Adaptação Fisiológica/genética , Antocianinas/biossíntese , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Membrana Celular/ultraestrutura , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Mutação , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Brotos de Planta/metabolismo , Estômatos de Plantas/fisiologia , Transdução de Sinais , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcriptoma
20.
Plant Physiol ; 167(3): 1039-57, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614064

RESUMO

Protein phosphorylation events play key roles in maintaining cellular ion homeostasis in higher plants, and the regulatory roles of these events in Na(+) and K(+) transport have been studied extensively. However, the regulatory mechanisms governing Mg(2+) transport and homeostasis in higher plants remain poorly understood, despite the vital roles of Mg(2+) in cellular function. A member of subclass III sucrose nonfermenting-1-related protein kinase2 (SnRK2), SRK2D/SnRK2.2, functions as a key positive regulator of abscisic acid (ABA)-mediated signaling in response to water deficit stresses in Arabidopsis (Arabidopsis thaliana). Here, we used immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry analyses to identify Calcineurin B-like-interacting protein kinase26 (CIPK26) as a novel protein that physically interacts with SRK2D. In addition to CIPK26, three additional CIPKs (CIPK3, CIPK9, and CIPK23) can physically interact with SRK2D in planta. The srk2d/e/i triple mutant lacking all three members of subclass III SnRK2 and the cipk26/3/9/23 quadruple mutant lacking CIPK26, CIPK3, CIPK9, and CIPK23 showed reduced shoot growth under high external Mg(2+) concentrations. Similarly, several ABA biosynthesis-deficient mutants, including aba2-1, were susceptible to high external Mg(2+) concentrations. Taken together, our findings provided genetic evidence that SRK2D/E/I and CIPK26/3/9/23 are required for plant growth under high external Mg(2+) concentrations in Arabidopsis. Furthermore, we showed that ABA, a key molecule in water deficit stress signaling, also serves as a signaling molecule in plant growth under high external Mg(2+) concentrations. These results suggested that SRK2D/E/I- and CIPK26/3/9/23-mediated phosphorylation signaling pathways maintain cellular Mg(2+) homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Magnésio/farmacologia , Família Multigênica , Desenvolvimento Vegetal/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ácido Abscísico/biossíntese , Arabidopsis/efeitos dos fármacos , Cromatografia Líquida , Imunoprecipitação , Modelos Biológicos , Mutação/genética , Fenótipo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA