Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 18: 1349878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433862

RESUMO

Protein kinase C γ (PKCγ), a neuronal isoform present exclusively in the central nervous system, is most abundantly expressed in cerebellar Purkinje cells (PCs). Targeted deletion of PKCγ causes a climbing fiber synapse elimination in developing PCs and motor deficit. However, physiological roles of PKCγ in adult mouse PCs are little understood. In this study, we aimed to unravel the roles of PKCγ in mature mouse PCs by deleting PKCγ from adult mouse PCs of PKCγfl/fl mice via cerebellar injection of adeno-associated virus (AAV) vectors expressing Cre recombinase under the control of the PC-specific L7-6 promoter. Whole cell patch-clamp recording of PCs showed higher intrinsic excitability in PCs virally lacking PKCγ [PKCγ-conditional knockout (PKCγ-cKO) PCs] than in wild-type (WT) mouse PCs in the zebrin-negative module, but not in the zebrin-positive module. AAV-mediated PKCγ re-expression in PKCγ-deficient mouse PCs in the zebrin-negative module restored the enhanced intrinsic excitability to a level comparable to that of wild-type mouse PCs. In parallel with higher intrinsic excitability, we found larger hyperpolarization-activated cyclic nucleotide-gated (HCN) channel currents in PKCγ-cKO PCs located in the zebrin-negative module, compared with those in WT mouse PCs in the same region. However, pharmacological inhibition of the HCN currents did not restore the enhanced intrinsic excitability in PKCγ-cKO PCs in the zebrin-negative module. These results suggested that PKCγ suppresses the intrinsic excitability in zebrin-negative PCs, which is likely independent of the HCN current inhibition.

2.
Commun Biol ; 5(1): 1224, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369525

RESUMO

Here we describe the microglia-targeting adeno-associated viral (AAV) vectors containing a 1.7-kb putative promoter region of microglia/macrophage-specific ionized calcium-binding adaptor molecule 1 (Iba1), along with repeated miRNA target sites for microRNA (miR)-9 and miR-129-2-3p. The 1.7-kb genomic sequence upstream of the start codon in exon 1 of the Iba1 (Aif1) gene, functions as microglia preferential promoter in the striatum and cerebellum. Furthermore, ectopic transgene expression in non-microglial cells is markedly suppressed upon adding two sets of 4-repeated miRNA target sites for miR-9 and miR-129-2-3p, which are expressed exclusively in non-microglial cells and sponged AAV-derived mRNAs. Our vectors transduced ramified microglia in healthy tissues and reactive microglia in lipopolysaccharide-treated mice and a mouse model of neurodegenerative disease. Moreover, live fluorescent imaging allowed the monitoring of microglial motility and intracellular Ca2+ mobilization. Thus, microglia-targeting AAV vectors are valuable for studying microglial pathophysiology and therapies, particularly in the striatum and cerebellum.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Animais , Camundongos , Lipopolissacarídeos , Microglia/metabolismo , MicroRNAs/genética , Doenças Neurodegenerativas/metabolismo , Transgenes
3.
Cerebellum ; 21(5): 776-783, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35218526

RESUMO

The cerebellum contains the highest density of protein kinase C (PKC) in the central nervous system. PKCγ, the major isotype accounting for over half of the PKCs in the cerebellum, is expressed exclusively in Purkinje cells (PCs). Inactivated PKCγ, which is localized in the cytoplasm of PC dendrites and soma, begins to translocate to the cell membrane upon activation. However, the physiological conditions that induce PKCγ translocation in PC remain largely unknown. Here, we virally expressed PKCγ-GFP in PCs and examined the conditions that induced its translocation to PC dendrites by whole-cell patch clamp analysis combined with confocal GFP fluorescence imaging. A single or repetitive (150 pulses at 5 Hz for 30 s) electrical stimulation to a climbing fiber (CF), which produced a complex spike(s) in PC, failed to induce translocation of PKCγ-GFP to the dendritic shaft of PCs. Direct current injection (+ 2 nA for 3 s) to PC also did not induce the translocation, although PCs generated simple spikes continuously at high rates. In contrast, high-frequency parallel fiber (PF) stimulation (50 pulses at 50 Hz for 1 s), which triggered action potentials followed by sustained depolarization (known as mGluR1-mediated slow depolarization), caused translocation of cytoplasmic PKCγ-GFP to the membrane. Low-frequency PF stimulation (150 pulses at 5 Hz for 30 s) induced continuous simple spike firing but did not induce translocation. These results suggest that CF-triggered depolarization, which causes Ca2+ influx through voltage-gated Ca2+ channels throughout PC dendrites and somas, is insufficient to induce the translocation of PKCγ, instead requiring high-frequency PF stimulation that activates mGluR1.


Assuntos
Células de Purkinje , Sinapses , Cerebelo/fisiologia , Dendritos/metabolismo , Proteína Quinase C/metabolismo , Células de Purkinje/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA